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Abstract. The rhythmic pumping motion of the heart stands as a cor-
nerstone in life, as it circulates blood to the entire human body through a
series of carefully timed contractions of the individual chambers. Changes
in the size, shape and movement of the chambers can be important mark-
ers for cardiac disease and modeling this in relation to clinical demog-
raphy or disease is therefore of interest. Existing methods for spatio-
temporal modeling of the human heart require shape correspondence
over time or suffer from large memory requirements, making it difficult
to use for complex anatomies. We introduce a novel conditional genera-
tive model, where the shape and movement is modeled implicitly in the
form of a spatio-temporal neural distance field and conditioned on clin-
ical demography. The model is based on an auto-decoder architecture
and aims to disentangle the individual variations from that related to
the clinical demography. It is tested on the left atrium (including the left
atrial appendage), where it outperforms current state-of-the-art methods
for anatomical sequence completion and generates synthetic sequences
that realistically mimics the shape and motion of the real left atrium. In
practice, this means we can infer functional measurements from a static
image, generate synthetic populations with specified demography or dis-
ease and investigate how non-imaging clinical data effect the shape and
motion of cardiac anatomies.

Keywords: Neural Implicit Functions · Spatio-Temporal Representa-
tions · Multi-Modal Inputs · Cardiac Anatomy

1 Introduction

During a heart beat, the heart chambers undergo a series of complex 3D defor-
mations and the morphology as well as the motion of contraction and relaxation
are critical functions to pump blood to all human organs. Such shape and mo-
tion can be captured by Computed Tomography (CT), where Cardiac Functional



2 K. Sørensen et al.

Analysis (CFA) has enabled fast acquisition with 20 (or more) time frames per
heartbeat. The cardiac anatomy and motion vary widely between individuals
and it is therefore of interest to disentangle the individual characteristics from
that of clinical factors such as gender, age or disease. Traditional shape modeling
based on shape correspondence and point distribution models [9] can be used
for generative modeling, but the integration of clinical data in such models is
currently an unsolved problem. Modeling the spatio-temporal characteristics of
the heart has been achieved through 4D registration methods [21] or by build-
ing spatio-temporal atlases [13,16]. More recently, deep learning based methods
have been used to learn the distribution over plausible cardiac shapes based on
dense point clouds [20,5], meshes [6] and voxel volumes [7]. Modeling the tem-
poral movement is usually approached by mapping the anatomy at one time
frame to another time frame (ie. end-diastole (ED) to end-systole (ES) or vice
versa) and has been handled using i.e. mesh U-nets [4], spatio-temporal graph
convolutions [15] or adversarial methods in the image domain [17]. Generative
frameworks have incorporated non-imaging clinical data with methods for gen-
erating cardiac ultrasound images with specified functional properties [24] and
Magnetic Resonance Images (MRI) with specified anatomical characteristics [2],
pathology [10] or biophysical parameters [22]. Generation of spatio-temporal car-
diac anatomies based on clinical demography has been approached by [23], who
learned a temporal latent space based on a recurrent neural network and gen-
erated cardiac anatomies represented by voxelized labelmaps. The explicit vox-
elmap representation however suffer from large memory requirements and are
not ideal for representing the smooth and often highly detailed cardiac anatomy.
Implicit representations (such as distance fields) have shown to be an effective
representation of complex shapes for medical image segmentation [27,1,28] as
well as shape generation in 3D [18,8] and 4D [11]. In contrast to other repre-
sentations, the continuous nature of neural distance fields allows for modeling
highly complex structures without requiring correspondence between samples or
have memory requirements growing cubically with the image resolution.

We propose a novel conditional generative model architecture, that integrates
clinical demographic data into the generation of spatio-temporal signed distance
fields (SDFs) of dynamic anatomies. The model is tested for modeling the left
atrium (LA) and its complex extrusion; the left atrial appendage (LAA). The
shape and motion of the LA and LAA are related to the risk of thrombus forma-
tion and stroke [12] and a detailed representation of the spatio-temporal dynam-
ics are therefore of interest. Capturing the small details of the LAA anatomy
would require a very large voxel map and obtaining point correspondence across
the widely varying samples are unattainable [26]. The use of a neural SDF repre-
sentation allows for modeling complex surfaces jointly in space and time, while
the auto-decoder formulation enables the derivation of two separate latent spaces
that disentangles the patterns related to the clinical demography from those re-
lated to individual variation. The proposed method are used to complete the full
cardiac cycle based on a single time frame and to generate realistic synthetic
anatomical sequences with specified clinical demography.
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2 Materials and methods

Overall framework6

A spatio-temporal neural distance field is a neural function that maps an arbi-
trary space-time coordinate x = (p, t), consisting of the 3D coordinate p and
the time index t, to the signed distance d̂ = fθ(x). The surface represented
by the neural SDF can thus be considered the decision boundary separating
SDF<0 from SDF>0. To learn such decision boundary for a single sequence,
the network is presented with a set X consisting of space-time coordinates x
and corresponding SDF-values d, such that X := {(x, d) : SDF(x) = d}. The
network parameters θ are optimized using the clamped L1-loss between the true
and predicted SDF-values in this set:

L(fθ(x), d) = |clamp(fθ(x), δ)− clamp(d, δ)| (1)

where the clamping parameter δ controls the distance from the surface, over
which we expect to learn an accurate distance field. The continuous spatio-
temporal SDF can then be approximated as SDF (S) ≈ fθ(S), where S refers to
all possible space-time coordinates.

To model multiple anatomical sequences with the same neural network, we
introduce a latent vector to represent each of the anatomical sequences indexed
by n = {1, ..., N}. This latent vector is concatenated with the space-time coor-
dinate and given as input to fθ, where it enables the neural function to create
decision boundaries unique to each anatomical sequence. We propose to learn
this latent vector as two separate parts: the clinical demographic latent vec-
tor zc representing an embedding of the clinical demography (gender, age and
SBP) and a residual latent vector zr representing the individual information
that cannot be described by the clinical demography. zc is embedded from the
clinical demography c with a neural network such that zc = gϕ(c). The resid-
ual latent vector zr is a learnable embedding unique to each of the sequences
in the training set (zr,1, zr,2, ..., zr,N ) and is optimized jointly with fθ and gϕ
using an auto-decoder formulation. The use of an auto-decoder circumvents the
need for designing and training a 3D data encoder, but requires test time opti-
mization which is slightly more time consuming and may risk converging to a
local solution. To optimize the autodecoder parameters, we sample K = 110.000
space-time coordinates for the 20 time frames (t = {0%, 5%, ..., 95%} of the car-
diac cycle) in each of the N = 290 anatomical sequences in the training set and
denote each of these samples sn,k,t and the corresponding SDF value dn,k,t. The
loss over the predicted and measured SDF-values across all N · T · K samples
are computed as:

argmin
θ,ϕ,{zr,n}N

n=1

N∑
n=1

K∑
k=1

95%∑
t=0%

L(fθ(gϕ(cn)⊕ zr,n ⊕ sn,k,t), dn,k,t) +
1

σ2
||zr,n||22, (2)

6 Code available at https://github.com/kristineaajuhl/spatio_temporal_generative_
cardiac_model.git

https://github.com/kristineaajuhl/spatio_temporal_generative_cardiac_model.git
https://github.com/kristineaajuhl/spatio_temporal_generative_cardiac_model.git
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Fig. 1. The signed distance field approximates the surface as the decision boundary
separating space-time coordinates (pk, tk) that are inside and outside the surface. For
each pk, tk the signed distance d̂ to the surface is predicted with the network fθ based
on a concatenation (⊕) of the clinical demography latent vector zc, the individual
latent vector zr and the coordinate. zc is embedded from the clinical demography
encoder gϕ, whereas the source of zr depends on the task. Training: Each training
sample is assigned a learnable embedding zr which is optimized jointly with gϕ and fθ.
Reconstruction: The individual embedding is learned by locking the parameters of
fθ and gϕ and optimize for zr. Generation: A new zr is generated by sampling from
a multivariate Gaussian distribution.

where the loss L is the clamped L1-loss from Equation 1, whereas ||zr,n||22 is a
regularization term that encourages compact latent spaces, and σ2 balances the
L1-loss and the regularization. Figure 1 shows an overview of how we propose to
integrate neural SDFs in a conditional generative framework and visualizes an
example of how the left atrial shape is encoded as the decision boundary of the
neural network based on point-distance samples.

Sequence completion — The proposed model can complete an anatom-
ical sequence based on the clinical demography c and the static anatomy at a
given time frame tgiven. The clinical demography are mapped to the clinical de-
mographic latent space as zc = gϕ(c), whereas the individual latent vector zr is
found using test-time optimization. We sample K = 110.000 space coordinates
(sk|tgiven), measure the distances to the static anatomy at tgiven and optimize
over the values in zr while locking the parameters of fθ and gϕ:

ẑr = argmin
zr

K∑
k=1

L(fθ(gϕ(c)⊕ zr ⊕ sk|tgiven), dk|tgiven) +
1

σ2
||zr||22, (3)

The full anatomical sequence can be reconstructed by evaluating the SDF at
all points on a uniform grid for the desired time frames and extract the zero-level
isosurface using Marching Cubes [14].

Sequence generation — The model can generate new plausible anatomical
sequences by sampling randomly in the individual latent space zr and concate-
nate it with the embedding of the clinical demography. In the derivation of the
auto-decoder formulation of neural distance fields (see [18]) the prior distribution
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over the latent variables zr is assumed to come from a zero-mean multivariate
Gaussian distribution. To generate new sequences with individual shape and
motion characteristics, we sample zr from such distribution.
Implementation details
The model was implemented with PyTorch [19] and trained on a NVIDIA RTX
A4000 (16GB) for 9 hours. The clinical demographic input is passed as a vector
with one-hot encoded gender (male/female) and age-group (<50,50-59,60-69 and
>69) and uses the continuous SBP normalized to [0; 1]. Both fθ and gϕ are
implemented as a multi-layer perceptron (MLP). fθ follows the architecture from
[18], whereas gϕ consist of two hidden layers with each 128 neurons. We use 64
dimensions for both zc and zr. During training we randomly dropout zr in 20%
of the training steps, which was found necessary to force the network to make
use of the clinical demography. All surfaces are extracted from an SDF evaluated
on an uniform grid sized 1283.
Data and preprocessing
A dataset of 4D geometries was extracted from CFA scans of 667 randomly
selected participants from the Copenhagen General Population Study. All sub-
jects are asymptomatic individuals from the general population, with 301/366
male/female participants, aged 41-89 years and with known systolic blood pres-
sure (SBP). Participation was conducted following the declaration of Helsinki
and approved by the ethical committee (H-KF-01-144/01). Each CFA series
consists of a cardiac computed tomography angiography (CCTA) image at 20
equally spaced time steps during one heart beat (t = 0%, 5%, ..., 95%). Each im-
age was segmented using an automatic deep learning based segmentation method
specifically developed for LAA segmentation from CT images [27]. We aligned
all anatomies at t = 0% by matching the center-of-mass, fine-tuned with a rigid
transformation based on iterative closest point (ICP)[3] and applied the found
transformation to all time frames. Finally, each anatomy was scaled with a fixed
factor such that all surfaces lie within the unit-sphere. We follow the sampling
strategy from [27] and sample 10.000 random samples within the unit sphere
and 100.000 samples in the vicinity of the surface based on the shape diame-
ter at each vertex for each time frame. All transformations and point-to-surface
distances were obtained using VTK [25]. We split the dataset randomly with
290/10/367 anatomical sequences for training/validation/testing.

3 Experiments and results

We evaluate the proposed methods on two different tasks - anatomical sequence
completion based on a single static anatomy as well as the clinical demography
and anatomical sequence generation based only on the clinical demography.

Sequence completion — Evaluating the sequence completion abilities of
a generative model assure us that the model has learned a descriptive distri-
bution of both shape and movement from the sequences in the training data.
We report results for completion based on the static anatomy at t = 0% as this
allows for comparison to [23]. We evaluate the completion quality using symmet-
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ric Chamfer Distance (CD) and Hausdorff Distance (HD) between the predicted
and true surfaces at each time step. The ability to capture the dynamic move-
ment is measured by comparing the maximum volume (Vmax), Fractional Change
(FC = (Vmax−Vmin)/Vmax)) and Cyclic Change CC = Vmax−Vmin between the
true and completed sequences. We have compared against the default CHeart
implementation [23] trained on our dataset as well as investigated the effect of
removing the clinical demography from our model, by setting the clinical demog-
raphy vector c to a zero-vector for all samples during training and testing. The
results are seen in Table 1. We observe that the proposed method significantly
outperforms CHeart [23], which is attributed the joint spatial and temporal mod-
eling and the increased representational power from the SDF. An ablation study
on the clinical demography, demonstrate a positive effect on estimating the func-
tional parameters (FC, CC and Vmax) even though the reconstruction errors do
not show an improvement.

Figure 2 shows the completion results from three different test cases. The blue
volume curve is an example of a normal atrial function consisting of a relaxation
phase (t = 0% to first peak), a passive emptying phase (first peak to plateau at
t ≈ 75%) and an active emptying phase (plateau to t = 95%). The red curve is
an example of an abnormal atrial motion dominated by passive emptying. We
observe that the proposed model correctly completes both of these sequences,
which indicates that the model are able to learn individual motion patterns.

Sequence generation — The proposed method can be used to generate
unique sequences with specified clinical demography. Figure 4(left) shows four
synthetically created samples based on the same clinical demography. We observe
that all generated anatomies are continuous and smooth surfaces, with volumes
indicating normal atrial motion. It is evident that multiple plausible LA and LAA
geometries and motions exist despite being generated from the same clinical
demography. This diversity is attributed to factors not included in the model
(ie. height, weight, smoking status, etc.), but also individual traits that cannot
be directly related to demography or disease. To evaluate the models ability
to generate realistic cohorts, we generate a synthetic counterpart to the test
set, where a synthetic anatomical sequence is generated based on the clinical
demography of each person in the test set. Since multiple plausible sequences
can be generated based on the same clinical demography, we do not compare the

Table 1. Sequence completion evaluation measuring the Chamfer distance (CD), Haus-
dorff distance (HD), Maximum volume (Vmax), Fractional Change (FC) and Cyclic
Change (CC). For each test sample we collect the time instance with the minimum,
average and maximum CD and HD and report the average across all test samples for
each of these. Bold indicates best evaluation.

Method CD [mm] HD [mm] Difference [%]
Min Mean Max Min Mean Max Vmax FC CC

CHeart [23] 2.80 4.13 6.23 9.59 16.79 54.16 4.41% 8.26% 9.65%
Ours (÷ demography) 1.71 2.88 4.26 6.75 11.64 17.08 3.90% 5.64% 9.28%
Ours 1.93 2.89 4.08 6.94 11.49 16.56 3.32% 4.59% 7.83%
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Fig. 2. Two examples of completed sequences illustrated with volume curves and the
chamfer distance (CD) between the predicted and true surface at time frame 0%,35%
and 75% (coloured surfaces) as well as surface with maximum volume (wireframe). The
blue (□) correspond to the 25th percentile evaluated on average CD, whereas the red
(⃝) shows an abnormal atrial motion without an active emptying phase.

generated surfaces directly to those from the test set. Instead, Figure 3 shows
the distribution of measured FC in both the real and synthetic data in eight
subgroups split on age and gender. Both the real and the generated data exhibit
similar trends; the FC decreases with age and are higher in women compared to
men. The longer tails in the real data are attributed outliers errors made by the
automatic image segmentation, where the volume is over- or underestimated in
one or more time frames.

Demography manipulation — We sample a single individual vector zr
and investigate the effect of changing the gender and age in the clinical de-
mography input. Figure 4(right) shows how changing the demography alters the
anatomical sequence. It can be noted that the shared zr ensures a relatively
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Fig. 3. Distribution of left atrial fractional change (FC) across the subgroups based on
gender (male/female) and age (< 50,50-59,60-69 and > 69) in the population from the
test set (left) and a synthetic population generated with the same clinical demography
as the population in the test set (right).
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stable overall anatomy across all samples, but that associations are captured
such that changing the gender from male to female for example results in a
smaller LA volume. The blue/pink opaque circles in the Principle Component
Analysis (PCA) plots in Figure 4 show the embeddings of the training data for
male/female participants. We observe a clear gender separation in clinical de-
mographic space, whereas the individual latent space shows no obvious gender
separation. This supports our idea of zr as a residual latent vector and that the
two spaces can be sampled independently.

4 Discussion and conclusion

We have presented a conditional generative model, that is capable of creating
plausible temporal sequences of cardiac anatomy while taking patient demogra-
phy into account. The neural SDF models the cardiac anatomy and movement
jointly, and allows for generating smooth and detailed anatomical sequences with
close resemblance to real anatomies. We showed that the proposed model out-
performs a current state-of-the-art method for anatomical sequence completion
and that it can be used to estimate functional parameters from the large pool of
CT protocols, where only one or two best-phase images are acquired. In contrast
to previous work, the versatility of the neural SDF representation allows for
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Fig. 4. Synthetically created samples. Left: fixed clinical demography (50-59 years
old, Male, systolic blood pressure equal to 130 mmHg) and sampled zr. Right: fixed
individual latent and varying zc. The figure show the first two principle components
(PC) of the latent spaces, the volume curves for all samples as well as the generated
anatomies at t = %0 (surface) and at Vmax (wireframe).
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basing the sequence completion on any single time frame or even multiple scans
(i.e. end-systolic and end-diastolic). We demonstrated that the model was able
to learn abstract associations between the clinical demography and atrial shape
and motion. We expect that the model can be extended with a larger collection
of diverse non-imaging data, which will allow for generating synthetic popula-
tions with specific demography, disease status or biophysical constraints. Being
able to generate realistic anatomical sequences of dynamically moving anatomies
based on such conditions is a valuable tool for methods such as fluid simulation,
operation planning and disease detection not only in the cardiac domain, but
any domain where spatio-temporal models are of interest.
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