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Abstract. Retinal foundation models aim to learn generalizable repre-
sentations from diverse retinal images, facilitating label-efficient model
adaptation across various ophthalmic tasks. Despite their success, cur-
rent retinal foundation models are generally restricted to a single imag-
ing modality, such as Color Fundus Photography (CFP) or Optical Co-
herence Tomography (OCT), limiting their versatility. Moreover, these
models may struggle to fully leverage expert annotations and overlook
the valuable domain knowledge essential for domain-specific represen-
tation learning. To overcome these limitations, we introduce UrFound,
a retinal foundation model designed to learn universal representations
from both multimodal retinal images and domain knowledge. UrFound
is equipped with a modality-agnostic image encoder and accepts either
CFP or OCT images as inputs. To integrate domain knowledge into rep-
resentation learning, we encode expert annotation in text supervision
and propose a knowledge-guided masked modeling strategy for model
pre-training. It involves reconstructing randomly masked patches of reti-
nal images while predicting masked text tokens conditioned on the cor-
responding image. This approach aligns multimodal images and textual
expert annotations within a unified latent space, facilitating generaliz-
able and domain-specific representation learning. Experimental results
demonstrate that UrFound exhibits strong generalization ability and
data efficiency when adapting to various tasks in retinal image analysis.
By training on ∼180k retinal images, UrFound significantly outperforms
the state-of-the-art retinal foundation model trained on up to 1.6 million
unlabelled images across 8 public retinal datasets. Our code and data
are available at https://github.com/yukkai/UrFound.

Keywords: Domain expert knowledge · Masked modeling · Retinal im-
age understanding · Multimodal foundation model.
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1 Introduction

Foundation models (FMs) are large, powerful artificial intelligence (AI) models
pre-trained on vast amounts of unlabeled data. By learning fundamental patterns
and relationships within diverse data, FMs gain the ability to adapt to diverse
downstream tasks with minimal additional training [20]. Notable examples of
FMs, such as CLIP [14], SAM [8], and GPT4 [12], have demonstrated impressive
generalization capabilities in various real-world scenarios.

Medical FMs are a specialized type of FM designed for the medical do-
main [11,19], representing one of the most notable advancements in medical
AI. Among these, Medical Vision-Language pre-training stands out as a spe-
cific solution that improves medical image analysis by learning domain-specific
features from medical images paired with corresponding clinical descriptions or
reports [10,18]. Recent medical FMs have focused heavily on radiology, particu-
larly chest X-rays [16,17]. For retinal FMs, RETFound [20] has been proposed,
which is pre-trained on 1.6 million retinal images using Masked Autoencoders
(MAE). Another notable example is FLAIR [15], a vision-language model that
leverages the CLIP architecture to enhance performance in retinal image analy-
sis, supporting zero-shot and few-shot inference through text supervision. Unlike
task-specific models that may yield sub-optimal results in the presence of domain
shifts, retinal FMs demonstrate robust generalization capabilities across differ-
ent retinal datasets and tasks. This presents an attractive solution to enhance
model efficacy and reduce the annotation burden on experts, thereby enabling
widespread clinical AI applications in retinal imaging.

Albeit impressive, existing retinal FMs are restricted to processing a single
imaging modality, such as Colour Fundus Photography (CFP) and Optical Co-
herence Tomography (OCT). In clinical ophthalmology, diagnosis often involves
multiple modalities, including CFP, OCT, and Fundus Fluorescence Angiog-
raphy (FFA) images. This requires training separate FMs for each modality,
resulting in higher maintenance costs and hindering the acquisition of comple-
mentary information across modalities. The question arises: Can a retinal FM be
developed to process multiple modalities? Moreover, expert domain knowledge,
often in the form of labels or medical reports, is crucial for effective retinal image
analysis. It guides models in capturing clinically relevant information, ensuring
clinical significance in real-world healthcare scenarios. However, current retinal
FMs struggle to fully leverage expert annotations, potentially hindering special-
ized representation learning. Another question arises: Can domain knowledge be
incorporated into a retinal FM for better generalization ability?

To address the research problems mentioned above, we introduce UrFound, a
universal retinal FM designed to learn versatile representations from both mul-
timodal retinal images and domain knowledge. UrFound employs a modality-
agnostic image encoder for processing CFP or OCT images and integrates do-
main knowledge from categorical labels and clinical descriptions through text
supervision. To achieve this, we convert expert annotations into detailed clini-
cal descriptions and propose a knowledge-guided masked modeling strategy for
UrFound pre-training. This strategy includes a masked image modeling branch
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Fig. 1: Knowledge-guided masked modeling framework for UrFound pre-training.
Solid arrows represent data flow, while dashed arrows indicate gradient flow.

to reconstruct randomly masked patches of retinal images, and a conditional
masked language modeling branch to predict masked word tokens based on the
corresponding retinal image. This approach aligns multimodal images and tex-
tual expert annotations within a unified latent space, facilitating domain-specific
representation learning.

Empirically, we find that incorporating domain knowledge into the retinal FM
through text supervision enhances generalization ability. Furthermore, UrFound
captures information from CFP and OCT images and performs well with both
modalities. Despite being pre-trained on a relatively small dataset of 180k retinal
images with expert annotations, UrFound significantly outperforms state-of-the-
art (SOTA) retinal FMs trained on up to 1.6 million unlabeled images across
eight public retinal datasets. This demonstrates the effectiveness of multimodal
images and domain knowledge in training powerful retinal FMs.

Our contribution is threefold: 1. We propose UrFound, a universal retinal
foundation model capable of processing CFP and OCT images while incorporat-
ing domain knowledge from expert annotations. 2. We introduce a knowledge-
guided masked modeling strategy that unifies the pre-training from multimodal
images and clinical descriptions, effectively integrating domain knowledge. 3. We
provide comprehensive evaluations, comparing UrFound with SOTA retinal FMs
across eight public retinal datasets.

2 The UrFound Model

In this section, we propose UrFound, a retinal FM designed for CFP and OCT
images, as the initial step toward developing universal retinal FMs. UrFound
is trained with guidance from expert annotations, which can take the form of
categorical labels, clinical descriptions, or any other formats that can be encoded
in text supervision. UrFound aims to learn domain-specific representations by
reconstructing masked patches of a retinal image while predicting masked word
tokens of textual domain knowledge conditioned on the unmasked image patches.
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Fig. 1 provides an overview of the UrFound model. UrFound has an image
encoder that learns the latent representation of retinal images as well as two
decoders that reconstruct the original retinal image and predict the word tokens
of the associated clinical descriptions from the latent representation, respectively.
The input of the image encoder can be either a CFP or OCT image. During pre-
training, we apply masked image modeling to randomly mask certain patches of
the input image. Then, the rest unmasked image patches are fed into the image
encoder to obtain their embeddings. These embeddings are then forwarded to
the image decoder to reconstruct the masked image patches, aiding the model
in capturing versatile and informative visual features.

Similar to masked image modeling, we apply conditional masked language
modeling to replace certain portions of word tokens of the clinical descriptions
with the mask token. The language decoder is then trained to predict the orig-
inal identity of the masked tokens based on both the unmasked words and the
latent image representation from the image encoder. This approach encourages
the model to recognize and comprehend the relationships between the retinal
image and fine-grained medical knowledge. It serves to bridge the gap between
visual features and textual information, integrating domain knowledge from the
descriptions into the latent image representation.

2.1 Knowledge-guided Masked Modeling

Formally, given a retinal image X, it is first reshaped into n patches with the
patch size s (e.g., 16× 16 in ViT [5]). A random mask M ∈ {0, 1}n is generated
with the mask ratio ρ where 1 indicates a masked patch and 0 indicates an
unmasked patch. The masked image X̃ is obtained as: X̃i = Xi · (1−Mi) +X0 ·
Mi,∀i ∈ {1, · · · , n}, where X0 represents the image [MASK] token. Let f(·) be
the image encoder that maps each image patch to a latent representation zi =
f(X̃i), and gv(·) be the image decoder that reconstructs the original image patch
Xi from the latent representation. Then the mask imaging modeling (MIM) can
be achieved by minimizing the following mean square error (MSE) loss:

LMIM =
n∑

i=1

Mi · ||Xi − gv(zi)||22, (1)

which measures the differences between the reconstructed and original image
patches. We adopt the high-resolution trick in [19] to let the model reconstruct
high-resolution patches at 2× the input resolution, which allows the model to
learn more detailed local features.

For conditional masked language modeling (MLM), the input text is trans-
formed into a sequence of tokens W = [w1, · · · , wL], where L is the sequence
length. Then, a certain percentage of tokens in the sequence are randomly re-
placed with a special [MASK] token, leading to a masked set WM and an un-
masked set WN . Let z be the average pooling of the unmasked image patch
representations, and h(·) be the text decoder to restore the masked text tokens.
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The objective of MLM is to minimize the negative log-likelihood function as
follows:

LMLM = −
∑

wi∈WM

logP (h(wi)|{h(wj), wj ∈ WN }, z), (2)

which predicts the original identities of those masked tokens based on the sur-
rounding context and the latent image representation. The total pre-training
objective function of the UrFound model is L = LMIM + LMLM . After pre-
training, the decoders are discarded and the encoder f(·) can be fine-tuned with
a small number of data for specific downstream tasks for retinal image analysis.

2.2 Text Preparation

For retinal images, the majority of publicly available expert annotations come
in the form of categorical labels rather than text. To maximize the utilization of
domain knowledge for pre-training, we follow FLAIR [15] to enhance categorical
image labels by augmenting relevant medical findings sourced from established
knowledge bases and clinical literature. For instance, the label “drusens” might
be described as “yellow deposits under the retina” or “numerous uniform round
yellow-white lesions”. Each label may have a varying number of descriptions.
During pre-training, we randomly select one of these descriptions for samples in
each batch, enhancing the diversity and robustness of the text supervision.

2.3 Multimodal Image Processing

UrFound directly learns representations for CFP and OCT images using a modality-
agnostic encoder. We have observed that this straightforward implementation
performs well and achieves superior generalization, particularly when training is
guided by domain knowledge through masked modeling. We also explore vari-
ants that use separate patch embedding layers, encoders, and decoders for CFP
and OCT imaging, respectively, while such modifications do not lead to better
results in our experiments.

3 Experiments

In this section, we assess the performance of UrFound compared to the SOTA
retinal FMs and conduct comprehensive experiments to address the following
key questions: Q1. Can the imaging modalities of CFP and OCT be encoded in
a universal FM? Q2. Does domain knowledge improve the generalization ability
of FMs? Q3. Do CFP and OCT images contain supplementary information that
helps representation learning? Q4. How well do retinal FMs perform in terms of
data efficiency? Q5. How effective are retinal FMs in adapting to downstream
tasks compared with task-specific models?
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Table 1: Performance of retinal FMs on different datasets (best, second best).

Dataset MAE FLAIR RETFd-CFP RETFd-OCT UrFound
ROC PRC ROC PRC ROC PRC ROC PRC ROC PRC

APTOS 94.06 67.59 92.68 62.20 94.26 71.87 87.56 53.76 94.86 71.64
IDRID 79.24 43.65 80.88 49.32 83.33 51.13 59.29 28.66 85.22 57.73
Messidor 84.21 48.76 81.88 48.32 86.40 58.59 65.89 28.59 88.22 60.78

PAPILA 62.85 47.48 74.80 59.30 74.36 57.27 51.67 35.03 78.32 62.54
GF 93.09 83.17 78.87 59.60 95.68 88.18 87.61 70.85 95.75 88.01

JSIEC 98.46 81.78 93.53 52.65 99.39 86.95 88.44 41.09 99.51 92.34
Retina 74.22 53.70 77.75 55.33 86.22 71.59 75.43 53.76 90.09 79.30

OCTID 98.67 95.35 84.52 60.20 93.85 82.09 99.39 97.58 99.55 97.97

3.1 Experimental Setup

We assess the capabilities of UrFound in adapting to diagnostic classification
tasks with minimal additional training. In line with common practice, we add
a linear classifier head on top of the learned image encoder and then fine-tune
both the encoder and classifier with task-specific labels. We compare the pro-
posed UrFound against the MAE model pre-trained on natural images as well
as SOTA retinal FMs including RETFound [20] and FLAIR [15]. For these com-
pared models, we use official checkpoints for fine-tuning. We report the area
under the receiver operating curve (ROC) and the area under the precision-
recall curve (PRC) as evaluation metrics. We choose the best checkpoints with
the highest ROC scores on the validation set for final evaluation.

Datasets. For pre-training, we construct a training set by collecting 25 CFP
datasets and one large OCT dataset, which include 103,786 CFP images and
83,484 OCT images with expert annotations, covering a wide range of oph-
thalmic diseases. More details can be found in the supplementary material. We
follow [15] to augment domain knowledge and transform categorical labels into
textual inputs. For evaluation of fine-tuning performance, we test 8 publicly
available datasets across three diagnostic classification tasks including diabetic
retinopathy grading (IDRID [13], MESSIDOR [3], APTOS [7]), glaucoma de-
tection (PAPILA [9], GF [1]), and multi-disease diagnosis (JSIEC [2], Retina,
OCTID [6]).

Implementation details. We implement UrFound by using PyTorch on a
single NVIDIA A100 GPU. We employ a Vision Transformer (ViT-base) with 12
Transformer blocks and a patch embedding layer as the retinal image encoder.
We utilize 8 and 6 Transformer blocks as the image and text decoders, respec-
tively. In the pre-training stage, we initialize UrFound with the MAE model and
use the tokenizer of BERT-Base [4] to convert clinical descriptions into word
tokens. We use a mask ratio of 0.75 for image modeling and 0.5 for language
modeling. We resize the input image to 224×224 both in the pre-training stage
and fine-tuning stage. Random horizontal flip and random crop are implemented
in the pre-training stage. And random horizontal flip, and color jitter for data
augmentation in the fine-tuning stage, each with a probability of 0.5. The total
training epoch is set to 200 with a warm-up period of 40 epochs. The learning
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Table 2: Performance of UrFound and its variants (best, second best).

Dataset
W/O Text Supervision W/ Text Supervision

CFP OCT CFP+OCT CFP OCT CFP+OCT
ROC PRC ROC PRC ROC PRC ROC PRC ROC PRC ROC PRC

APTOS 93.81 65.93 89.92 56.11 94.01 67.58 94.36 68.68 90.40 56.38 94.86 71.64
IDRID 79.47 45.44 69.10 35.32 79.51 44.59 84.64 55.46 66.28 31.09 85.22 57.73
Messidor 84.76 52.86 69.10 30.73 84.28 50.47 86.24 58.28 71.21 32.34 88.22 60.78

PAPILA 69.13 52.36 47.21 35.47 69.65 53.68 73.45 54.92 56.59 38.19 78.32 62.54
GF 93.84 84.50 89.01 73.30 93.48 83.70 95.16 87.17 89.61 73.62 95.75 88.01

JSIEC 98.72 88.72 91.71 50.60 99.08 85.44 99.48 92.84 92.35 51.33 99.51 92.34
Rtina 88.17 76.01 70.29 48.78 87.08 74.34 88.50 75.77 81.40 61.81 90.09 79.30

OCTID 98.40 95.60 99.37 97.35 99.59 97.88 98.05 94.56 99.28 95.33 99.55 97.97

rate is set to 1.5e-4, and the batch size is set to 128. In the fine-tuning stage,
the learning rate is adjusted to 1e-4, the batch size is reduced to 16, and the
training epoch is set to 50 with a warm-up period of 10 epochs.

3.2 Main Results

Table 1 shows the classification results of the compared retinal FMs fine-tuned
for various retinal disease diagnosis tasks, and statistical significance analysis
is available in the supplementary material. It can be observed that retinal FMs
such as RETFound-CFP and UrFound achieve better results than MAE in all the
cases, which demonstrates the effectiveness of retinal FMs in learning generaliz-
able representations for retinal imaging analysis. UrFound consistently outper-
forms the second-best method, RETFound. This superiority can be attributed
to the integrated domain knowledge in UrFound through text supervision. In
contrast, although FLAIR also leverages domain knowledge, it does not perform
well and lags behind MAE in some cases. This is possibly because FLAIR focuses
on image-text alignment rather than capturing the visual features of retinal im-
ages. It results in a sub-optimal image encoder for image understanding in the
pretrain-finetune setting.

RETFound-CFP and FLAIR are designed specifically for CFP images, ex-
hibiting subpar performance when applied to OCT images. Similarly, RETFound-
OCT yields the poorest results on CFP datasets. In contrast, UrFound showcases
its superiority in processing both CFP and OCT modalities. It achieves this by
learning universal and comprehensive representations that span across modali-
ties, demonstrating its capability to effectively handle diverse imaging types.

Impact of multimodal imaging and domain knowledge. To investi-
gate how multimodal data and domain knowledge affect the performance of Ur-
Found, we compared UrFound against its single-modality variants, either with
or without domain knowledge. As shown in Table 2, without text supervision,
UrFound trained from CFP+OCT images achieves reasonably good results on
both CFP and OCT datasets. This indicates that it is promising to learn uni-
versal FMs for multiple retinal imaging modalities (Q1). Furthermore, the in-
clusion of text supervision significantly enhances the performance of UrFound,
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Fig. 2: (a) Data efficiency of retinal FMs, Axes X and Y are the percentage of
training data used and the corresponding AUROC, respectively. (b) Comparison
of UrFound with tasks-specific models in AUROC with different datasets.

which demonstrates the effectiveness of domain knowledge in learning domain-
specific and generalizable representations (Q2). With text supervision, UrFound
trained from CFP+OCT images outperforms its single-modality counterparts,
which suggests that CFP and OCT images contain supplementary information
beneficial for improved representation learning (Q3).

Data efficiency. Fig. 2a shows the classification results of the compared
FMs at different percentages of training data on the APTOS, GF, JSIEC, and
OCTID datasets. UrFound outperforms other retinal FMs in most settings and
demonstrates a more significant advantage when fewer data are used for train-
ing (Q4). It is noteworthy that UrFound is pre-trained on ∼180k retinal im-
ages, a significantly smaller dataset compared to existing retinal FMs such as
RETFound-CFP, which is trained with over 900k CFP images. These demon-
strate the superior data efficiency of UrFound, making it well-suited for retinal
imaging analysis with limited annotations.

Comparison with task-specific models. To verify the advantages of
transforming expert annotations into text for pre-training, we compare UrFound
with task-specific models (TSMs) that are first trained with the class labels
of specific classification tasks (as a supervised way of pre-training) and then
adapted to test datasets for evaluation. Specifically, we test two TSMs: one for
diabetic retinopathy grading (TSM-CFP) and the other for OCT disease classi-
fication (TSM-OCT). TSM-CFP is trained on all the CFP pre-training datasets
for diabetic retinopathy grading, comprising 51,556 CFP images and labels of
five classes. TSM-OCT is trained on all the OCT pre-training datasets, which
include 83,484 OCT images and labels of four classes. In total, the data used for
training TSMs account for 72% of those used for pre-training UrFound.

Fig. 2b presents the ROC scores of TSMs and UrFound on the APTOS,
GF, JSIEC, and OCTID datasets, where each dataset corresponds to different
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downstream tasks. UrFound and TSM-CFP obtain similar results on the ATPOS
dataset. This is expected because the task of APTOS aligns with the training
of TSM-CPT. UrFound consistently outperforms TSMs on other datasets. This
suggests that TSMs lack the flexibility to learn generalizable representations for
various tasks. In contrast, UrFound benefits from expert annotations via text
supervision, offering a more effective approach to integrating valuable domain
knowledge in representation learning (Q5).

4 Conclusion

We proposed UrFound, a Universal retinal Foundation model, which features a
modality-agnostic image encoder and utilizes knowledge-guided mask modeling
as a pre-training objective, allowing it to learn generalizable representations from
both multimodal images and expert annotations. Through comprehensive exper-
iments on 8 public retinal datasets, we demonstrated its strong generalization
ability and data efficiency in adapting to various downstream tasks. Neverthe-
less, UrFound has two limitations: 1. UrFound is designed to process CFP and
OCT images while there exist other retinal imaging modalities such as FFA. 2.
UrFound is pre-trained on a relatively small dataset with disease labels as expert
annotations. In practice, many unlabeled data are available for pre-training.
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