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Abstract. Unsupervised Anomaly Detection (UAD) methods aim to
identify anomalies in test samples comparing them with a normative dis-
tribution learned from a dataset known to be anomaly-free. Approaches
based on generative models offer interpretability by generating anomaly-
free versions of test images, but are typically unable to identify sub-
tle anomalies. Alternatively, approaches using feature modelling or self-
supervised methods, such as the ones relying on synthetically generated
anomalies, do not provide out-of-the-box interpretability. In this work,
we present a novel method that combines the strengths of both strategies:
a generative cold-diffusion pipeline (i.e., a diffusion-like pipeline which
uses corruptions not based on noise) that is trained with the objective
of turning synthetically-corrupted images back to their normal, origi-
nal appearance. To support our pipeline we introduce a novel synthetic
anomaly generation procedure, called DAG, and a novel anomaly score
which ensembles restorations conditioned with different degrees of abnor-
mality. Our method surpasses the prior state-of-the art for unsupervised
anomaly detection in three different Brain MRI datasets.
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1 Introduction

Unsupervised Anomaly Detection (UAD) in medical images involves the detec-
tion and/or localization of anomalies without requiring annotations, leveraging
only a dataset known to be anomaly-free that describes the so-called normative
distribution. At inference time, UAD methods try to assess whether a given test
image belongs to the learnt normative distribution or not. The interest for UAD
stems from the fact that differently from common supervised approaches UAD
methods 1) do not require annotations, which are expensive and challenging to
obtain [14], and 2) are not limited to the labelled classes seen during training.

Multiple strategies have been proposed in the literature. Commonly, UAD
methods start by defining a model of the observed normative distribution, either
using generative models or self-supervised learning. Methods relying on genera-
tive models often query the model to produce an image consistent with a given
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test image but without anomalies present, and identify as anomalous the areas
where the generated image is different from the input test one [3]. While gen-
erative models produce a useful healthy counterfactual, their UAD performance
is usually limited by blurry reconstructions or lack of coverage of the healthy
distribution [11]. Instead, self-supervised strategies typically introduce synthetic
anomalies into healthy samples and subsequently train a segmentation network
to directly identify the introduced anomalies [21]. Under certain conditions, mod-
els are expected to generalize to unseen, naturally occurring anomalies. While
very successful in recent editions of MICCAI’s Medical Out-of-Distribution Chal-
lenge (MOOD)[25], synthetic anomaly models lack in interpretability.

Very recently, a novel strategy called Diffusion-Inspired Synthetic Restora-
tion (DISYRE) [17] combining generative and synthetic anomaly methods have
been presented. In this paper, we examine and address the limitations of previ-
ously proposed approaches, and implement a hybrid method inspired by diffusion
models to turn synthetically corrupted images into healthy ones. Differently from
previous approaches, we specifically introduce:

– A novel synthetic anomaly generation process that increases the coverage
of the anomaly distribution by disentangling attributes of the generated
anomalies, and more importantly, makes the learnt model robust to the
assumptions of severity which are required for inference.

– A novel method to identify anomalies which ensembles predictions created
under different assumptions on severity.

We evaluated our novel hybrid method named DISYRE v2, in three Brain MRI
datasets. DISYRE v2 substantially outperforms all previous methods, setting a
new state-of-the-art in UAD. The codebase for DISYRE v2 is available online4.

2 Related Works

Synthetic anomaly UAD strategies consist in training segmentation networks to
identify synthetically generated anomalies, expecting the model to generalize to
unseen, naturally occurring abnormalities. First proposed in Foreign Patch Inter-
polation (FPI) [21], authors realised that the key to generalization is the anomaly
generation (AG) procedure, which needs to yield plausible anomalies with a wide
coverage of the unknown anomalous distribution. In FPI anomalies are gener-
ated by interpolating a squared region of the sample with a patch extracted from
a separate sample. A scalar α defines the amount of interpolation used in the
corruption and can be used as a proxy for the anomaly severity. A segmentation
network is then trained to localize the corruption. Subsequent works increased
performance by seamlessly blending the anomalies with the surrounding area
[22,25]. More recent works [20,2] improved generalization imposing foreground
conditions on the generated anomalies, proposing better training losses for the
task and ensembling models trained on different synthetic tasks.

4 https://github.com/snavalm/disyre.
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Fig. 1: Overview of the main components of DISYRE v2, our proposed unsuper-
vised anomaly detection pipeline.

On a separate image modelling strategy, diffusion models have recently be-
come the state-of-the-art generative models. Typically, Denoising Diffusion Prob-
abilistic Models (DDPM) [8] are trained to reverse a forward process by which
images are gradually corrupted with Gaussian noise. By learning to undo the
noise corruption, diffusion models learn a score function,∇x log p(x), which spec-
ifies how to modify image pixels to increase their joint probability p(x). Image
generation is achieved by iteratively denoising Gaussian noise. Cold-diffusion [1]
follows the same concept, but replaces Gaussian noise with alternative corrup-
tions (e.g., blurring, masking). Diffusion models have become recently popular
in UAD: the most common approach is to directly train a diffusion model on
anomaly-free images. At inference time, test images are corrupted with noise
and subsequently denoised, aiming at obtaining an image restoration [4], i.e. an
image consistent with the test image but without the original anomalies [24,19].
Anomalies are then identified by comparing test images with their restorations.
After corrupting test images with noise, restorations unavoidably shift from the
original images, typically producing undesirable changes to low-frequency de-
tails, which makes these methods unable to identify subtle anomalies.

Recently an approach named DISYRE [17] showed that, in principle, a score
function can act directly as a pixel-wise anomaly score for UAD. Accordingly,
a cold-diffusion pipeline with a gradual, synthetic anomaly corruption was pro-
posed, so the learnt score function can generalize to unseen medical anomalies.
Similarly to standard diffusion, models are conditioned with a time step t which
in DISYRE is a proxy for anomaly severity. Through this conditioning, at infer-
ence time DISYRE assumes in practice that test images are highly anomalous,
and iteratively uses the modelled score function to generate a restoration. Such
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an assumption is not realistic and hampers its ability to identify subtle anoma-
lies, as confirmed by the reported results, where this approach is outperformed
by previous methods. Moreover, if the model is instead run assuming lower lev-
els of anomaly severity (acting on the value used for t), the overall performance
drops significantly.

3 Methods

3.1 Disentangled Anomaly Generation

We hypothesize that the sensitivity of DISYRE to the assumed severity is due to
the choice of FPI [21] as the strategy for generating synthetic anomalies. Since
FPI anomalies are created by interpolating two image patches, this is unlikely
to produce significant shifts in intensities at the beginning of the corruption
process. This feature of FPI can lead to models associating low t only to texture
anomalies and, consequently, negatively impacting the restoration abilities of the
final model for hyper- and hypo-intense lesions when conditioning with a low t.

To address this issue, we introduce a more expressive Disentangled Anomaly
Generation (DAG) process, which disentangles 3 attributes of synthetic anoma-
lies: shape, texture, and intensity bias, where intensity bias is defined as a shift
in the expected tissue intensities. When generating anomalies each of the at-
tributes is independently randomly sampled following a uniform distribution
and combined to generate a synthetic anomaly. Differently from FPI, DAG can
create gradual hyper- and hypo-intense synthetic lesions, which we believe can
make the cold-diffusion pipeline robust to the assumed severity during inference.
Additionally, by generating anomalies with different combinations of anomalous
textures and intensities, DAG can increase the coverage of the anomalous image
distribution.

Anomaly Shape: We follow the implementation from [18] where the shape
component is determined by a mask m ∈ RH×W , with H and W respectively
height and width of the image, and mi ∈ [0, 1], where pixels with mi = 0 are
uncorrupted and mi = 1 are anomalous. Masks are generated randomly and
their edges smoothed so anomalies blend gradually with surrounding areas.

Anomaly Texture: The texture component is created following FPI [21].
Image patches randomly sampled from the healthy training set, referred to as
foreign patches xfp ∈ RH×W , are used to replace sections of healthy training
images x ∈ RH×W . The corruption is achieved with a convex combination of
x and xfp governed by the interpolation factor αtext ∈ [0, 1]. Differently from
FPI, we attempt to separate bias and texture components by normalizing xfp

so it has the same range of intensities as the original image x in the anomaly
location (being xfp normalized version of xfp). Texture corrupted images xtext

are defined as:
xtext = (1− αtext ·m) · x+ αtext ·m · xfp (1)

Intensity Bias: Intensity corruptions are achieved shifting intensities in the
location determined bym by a factor ±αbias. To obtain more plausible anomalies
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we aim to restrict the shift of intensities to specific tissue types (e.g. white or
gray matter in the case of Brain MRI) within the anomaly location determined
by m. We propose to use k-Means to identify clusters of intensities across the
whole dataset which we assume to represent tissue types (K = 5 clusters are
used in our experiments). When generating anomalies, we randomly choose the
tissue type k and define a tissue type mask as mtissue ∈ RH×W with elements
mi

tissue = 1 if xi is assigned to cluster k and mi
tissue = 0 otherwise. Additionally,

the randomly sampled biassign ∈ {−1, 1} defines whether intensities will be
decreased or increased. The bias corruption is applied to xtext to obtain the final
synthetically corrupted image xsc used during training:

xsc = (1−m ·mtissue) · xtext + (xtext + αbias · biassign) ·m ·mtissue (2)

Figure 1 shows anomalies generated when varying attributes αbias and αtext.

3.2 Cold-diffusion with synthetic anomaly corruptions

In diffusion models [8], a corruption schedule B(t) defines a gradual Gaussian
noise corruption process which starts at time step t = 0, where images are unal-
tered, and ends at t = T , where only Gaussian noise remains. Diffusion models
are trained to reverse this process: by denoising samples while conditioned on t,
they learn to generate high-frequency details for low values of t and structural
features for high values. Cold-diffusion [1] follows the same strategy but proposes
alternative corruptions not based on noise.

We implement a synthetic anomaly cold-diffusion method to generate restora-
tions from images with anomalies following DISYRE [17]. In the original imple-
mentation, the noise schedule B(t) from DDPMs is adopted and used to set the
FPI [21] interpolation factor α = B(t). Consequently, when t = 0, αt = 0 the
image belongs to the observed healthy distribution, while when t = T , αt = 1
and the image is highly anomalous. A network Pθ is trained to restore cor-
rupted images xt into their original counterparts x0 when conditioning on t,
x0 ≈ x̂0 = Pθ(xt, t). Network parameters are therefore optimized using the ob-
jective:

Et∼[1,T ],x0,xfp
(∥x0 − Pθ(xt, t)∥2) (3)

We propose to extend the model to the 2 dimensions of corruption in DAG,
i.e. αtext and αbias, by simply conditioning on t = B−1 (max(αtext, αbias)), where
B−1 is the inverse of B(t), so the model receives a single indication of severity.

3.3 Anomaly localization

Diffusion models generate images iteratively, starting at step t = T with Gaus-
sian noise xT ∼ N (0, I), where xT ∈ RH×W . At each of the T iterations the
diffusion model denoises the sample until obtaining an image from the observed
distribution at step t = 0. Similarly, [17] proposes to iteratively use the score
function learned in the domain of synthetically corrupted images to heal test



6 S. Naval Marimont et al.

images x and obtain restorations. The residuals between restorations and orig-
inal images are then used as anomaly score (AS). Importantly, by starting the
restoration process with t = T the method assumes a high severity of abnormal-
ity. We refer to the AS proposed in [17] as multi-step in our experiments.

In this work, we propose an effective alternative, which is to ensemble single-
step restorations conditioned at different degrees of abnormality.

ASensemble =
0∑

t=T

(∥Pθ(x, t)− x∥) (4)

Our proposed Ensemble AS allows us to leverage the increased model ro-
bustness from DAG. Similarly to [17], in practice we skip steps based on a step
size hyper-parameter. We choose step size = 25 as a compromise between cov-
erage of the anomalous distribution and inference speed, and report results in
the supplementary materials. As in [17], we use sliding window inference and
weight the AS predicted for individual patches using the proportion of fore-
ground. Sliding window inference allows to apply our pipeline seamlessly to other
high-dimensional modalities. In our experiments we use a patch-overlap of 0.25
and gaussian weighting of patches [9].

4 Experiments

4.1 Experimental setup

Our experiments use the Brain MRI setup from [11] which includes datasets:

– Cambridge Centre for Ageing and Neuroscience (CamCAN) [23]: 653 T1- and
T2-weighted images of healthy and lesion free subjects. CamCAN dataset is
used for training (N = 603) and to evaluate training convergence (N = 50).

– Anatomical Tracings of Lesions After Stroke (ATLAS) dataset [13]: 655 T1-
weighted images of stroke patients with annotated lesions. Some of these
images are affected by artefacts and inadequate skull-stripping, which UAD
methods often identify as anomalies despite not being annotated as such and
thus lead to performance underestimation. For our internal ablations we use
the subset excluding issues (ATLAS-ex, N=571), but report the results for
the full dataset when comparing to previous studies [11].

– Multimodal Brain Tumor Segmentation (BraTS) Challenge dataset [16] 2020
edition: 369 T1- and T2-weighted images from subjects with gliomas, pro-
vided with manual annotations of lesions.

ATLAS and BraTS datasets are used to evaluate UAD performance while
CamCAN is used as the training, normative dataset. We follow the pre-processing
specified in [11]. Similarly to [17], we used a 2D patch-based pipeline with patches
of 128×128 size obtained from non-empty axial slices. Our network implementa-
tion, diffusion corruption schedule, and training schedule follow the specifications
in [17] but we ran training for longer (200,000 steps) to ensure convergence.
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Table 1: Localization results of the image-reconstruction (IR), feature-modeling
(FM), self-supervised (S-S) and hybrid (HY) methods. Best scores are bold.

ATLAS BraTS-T1 BraTS-T2

Method AP ⌈Dice⌉ AP ⌈Dice⌉ AP ⌈Dice⌉

IR

VAE [3] 0.11 0.20 0.13 0.19 0.28 0.33
r-VAE [4] 0.09 0.17 0.13 0.19 0.36 0.40

F
M

FAE [15] 0.08 0.18 0.42 0.45 0.51 0.52
PaDiM [5] 0.05 0.13 0.21 0.28 0.34 0.38
CFLOW-AD [7] 0.04 0.10 0.16 0.24 0.31 0.35
RD [6] 0.11 0.22 0.36 0.42 0.47 0.50

S
-S

PII [22] 0.03 0.07 0.13 0.22 0.13 0.22
DAE [10] 0.05 0.13 0.13 0.20 0.47 0.49
CutPaste [12] 0.03 0.06 0.07 0.13 0.22 0.26
MOOD22 [18] 0.10 0.21 0.24 0.31 0.47 0.48

H
Y DISYRE [17] 0.29 0.37 0.34 0.41 0.75 0.70

DISYRE v2 (Ours) 0.33 0.45 0.48 0.51 0.79 0.73

4.2 Results and Discussion

To quantitatively evaluate our method, we use Average Precision (AP) and an
estimate of the best possible Sørensen-Dice index (⌈Dice⌉) as in [11]. To evaluate
the robustness of the model to the assumed severity (t), we obtained AS from
single-step restorations, i.e. ∥x−P (x, t)∥ for different t. Figure 2 shows that DAG
improves results across all values of t. The improvement is particularly relevant
when conditioning with t = 19 and t = 39 (i.e. low severity assumed) in BraTS-
T2 and ATLAS datasets. Since anomalies in BraTS-T2 and ATLAS appear
hyper- and hypo-intense respectively, these results showcase that, by enabling
the creation of low-grade bias-only anomalies, DAG addresses the limitations of
FPI and makes the model robust across different severity levels.
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Fig. 2: AP for 4 independent seeds, using single-step restoration, FPI vs DAG.
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Table 2: AP in test sets for combinations of Anomaly Score (AS) and Anomaly
Generation (AG). Mean and std. dev. on 4 seeds.

AS AG ATLAS-ex BraTS-T1 BraTS-T2

Unconditional FPI 0.36 ± 0.03 0.44 ± 0.01 0.68 ± 0.00
Unconditional DAG 0.40 ± 0.01 0.44 ± 0.01 0.74 ± 0.01

Multi-step FPI 0.42 ± 0.02 0.40 ± 0.02 0.73 ± 0.04
Multi-step DAG 0.47 ± 0.00 0.44 ± 0.02 0.78 ± 0.02
Ensemble FPI 0.44 ± 0.02 0.46 ± 0.02 0.69 ± 0.06
Ensemble DAG 0.47± 0.01 0.48 ± 0.01 0.79 ± 0.02

Next we evaluated the interaction between proposed AG and AS strategies in
Table 2. To further evaluate the impact of conditioning, we also include models
trained to generate restorations without conditioning on t altogether, with their
AS defined as ∥x − P (x)∥. Conditional setups show overall better performance
compared to unconditional ones, showcasing the benefits of the diffusion-like
pipeline. However, prior methods (i.e. multi-step AS) fail to improve the uncon-
ditional setting in BraTS-T1 (where anomalies are often subtle) by assuming
a high severity during inference time. DISYRE v2 solves this limitation with
the proposed Ensemble AS, which raises the AP by 10% (0.48 vs 0.44). The
interaction between the proposed AS-AG strategies is noteworthy: DAG makes
single-step restorations robust to the assumed severity, benefiting the Ensembled
AS when combining predictions.

Finally, Table 1 includes a comparison of our method with baselines evaluated
in [11] and DISYRE [17]. The performance of hybrid methods showcases that the
combination of image restoration and anomaly localization tasks improve above
their individual components, i.e. image-reconstruction and synthetic-anomaly lo-
calization [22,12]. By addressing the described limitations of the original DISYRE,
DISYRE v2 outperforms it by a good margin across the 3 tasks. Figure 3 includes
qualitative examples of predictions. Additional comparisons between Ensemble
and Multi-step AS can be found in the supplementary materials.

5 Conclusion

In this work we presented DISYRE v2, a novel evolution of DISYRE, and eval-
uated its performance in a common test bench of Brain MRI lesions. We set the
new state-of-the-art in the three tasks where we evaluated it, and importantly,
improved the performance metrics for the two more challenging tasks (ATLAS
and BraTS-T1) by more than 10%. In our analysis we identify limitations of pre-
vious works and present as a solution a novel combination of synthetic AG, AS
and cold-diffusion modelling which allows to make fewer assumptions at infer-
ence time, removing biases towards specific anomalies. Consequently, DISYRE
v2 not only improves performance in the tasks evaluated, but it is expected to
be more robust across the diverse and challenging naturally occurring medical
anomalies, setting a new state-of-the-art in medical UAD.
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Fig. 3: Examples of restorations and Ensembled AS vs ground truth (red outline).
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