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Abstract. Accurate polyp segmentation methods are essential for colon
polyp screening and colorectal cancer diagnosis. However, polyp segmen-
tation faces the following challenges: (1) Small-sized polyps are easily
lost during the identification process. (2) The boundaries separating the
polyp from its surroundings are fuzzy. (3) Additional distracting infor-
mation is introduced during the colonoscopy procedure, resulting in noise
in the colonoscopy image and influencing the segmentation outcomes. To
cope with these three challenges, a method for colon polyp segmentation
based on local feature supplementation and shallow feature supplemen-
tation (LSSNet) is proposed by incorporating feature supplementation
structures in the encoder-decoder structure. The multiscale feature ex-
traction (MFE) module is designed to extract local features, the inter-
layer attention fusion (IAF) module is designed to fuse supplementary
features with the current layer features, and the semantic gap reduction
(SGR) module is designed to reduce the semantic gaps between the lay-
ers, which together form the local feature supplementation structure. The
shallow feature supplementation (SFS) module is designed to supplement
the features in the fuzzy areas. Based on these four modules LSSNet is
proposed. LSSNet is evaluated on five datasets: ClinicDB, KvasirSEG,
ETIS, ColonDB, and EndoScene. The results show that mDice scores
are improved by 1.33%, 0.74%, 2.65%, 1.08%, and 0.62% respectively
over the compared state-of-the-art methods. The codes are available at
https://github.com/heyeying/LSSNet.
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1 Introduction

The second most common cause of cancer-related mortality globally is colorectal
cancer (CRC) [12]. Colonoscopy is a commonly used screening method that can
help reduce morbidity and mortality from colorectal cancer [11]. Colonoscopy
can lower colorectal cancer mortality by approximately 60% and incidence by
roughly 40%, according to the research [14]. However, this inspection process
takes a lot of time for the doctor and there are cases of missed detections. The
use of segmentation algorithms to recognize polyps in colonoscopy images can
improve detection efficiency and assist in polyp diagnosis.

https://github.com/heyeying/LSSNet
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Methods for medical image segmentation have been developing quickly in re-
cent years due to the rapid advancement of deep learning and the application of
convolutional neural networks. FCN [7] was the first to propose end-to-end fully
convolutional networks. Fully convolutional versions of existing networks could
accept inputs of arbitrary size for semantic segmentation. UNet [9] was based
on the FCN architecture and expanded it by proposing a symmetric U-shaped
architecture, which was made up of a contracting path and an expanding path.
UNet++ [26] proposed an encoder-decoder network using dense skip paths to
reduce the semantic gap between the encoder and decoder. Given the success
of Transformer’s application in computer vision, PHCU-Net [21] added Trans-
former to UNet and proposed a dual-branch attention structure to extract local
features and global features.

Apart from the medical image segmentation networks previously mentioned,
specific networks for polyp segmentation were designed to tackle the difficulties
associated with polyp segmentation. PraNet [2] introduced a parallel reverse
attention network for the aggregation of high-level features and the generation of
a global map. The global map guided the network to reversely extract boundary
features. However, its processing was not robust enough in the presence of noise.
SANet [19] introduced the shallow attention network to decouple image color
and content while utilizing the shallow attention mechanism to suppress noise.
Nonetheless, the network did not give careful thought to ways to enhance the
capacity of the model for feature learning to enhance the model’s performance.
LDNet [23] introduced a lesion-aware dynamic network, which was capable of
detecting hidden polyps by using dynamic kernel adaptive learning based on the
input image to improve segmentation capability. However, the network is more
prone to over-detection. CASCADE [8] introduced a cascaded attention decoder,
using the pyramid transformer as the backbone, and using the convolutional
attention method to build the encoder. However, interlayer feature fusion using
only the information from the layers after backbone downsampling resulted in
localized information loss.

Considering the drawbacks of the above methods and challenges such as loss
of small-sized polyps, fuzzy boundaries, and noise, designing a method that en-
ables the network to pay more attention to the local features of the polyps and
boundary features is very necessary. Therefore, a method for colon polyp segmen-
tation based on local feature supplementation and shallow feature supplementa-
tion (LSSNet) is proposed. The local feature supplementation structure mainly
integrates local features from previous layers for supplementation while reduc-
ing semantic gaps between layers. Subsequently, multiscale feature extraction is
applied to the supplemented features to prevent the loss of small-sized polyps.
The shallow feature supplementation structure can focus on the fuzzy boundary
features of the polyp, and the fuzzy boundary can be clarified by injecting shal-
low features. The main contributions of this work can be summarized as follows:
(1) The LSSNet is proposed to improve the precision of polyp segmentation by
incorporating two feature supplementation structures in the U-shaped encoder-
decoder structure. (2) The local feature supplementation structure consisting of
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Fig. 1. (a) The overall architecture of LSSNet. (b) The structure of the convolution
branch. (c) Illustration of Down module.

a multiscale feature extraction (MFE) module, a semantic gap reduction (SGR)
module, and an interlayer attention fusion (IAF) module is developed. (3) The
shallow feature supplementation structure consisting of a shallow feature supple-
mentation (SFS) module and convolutional branch is proposed. (4) The proposed
method is evaluated on five challenging polyp datasets, and the experimental re-
sults showcase its superiority over five other SOTA methods.

2 Method

The architecture of LSSNet is shown in Fig. 1(a). The local feature supplemen-
tation structure and shallow feature supplementation structure are added to the
encoder-decoder structure. Specifically, the pre-trained PVT v2 [18] is used as
the encoder. The local feature supplementation structure is composed of the SGR
module, IAF module, and MFE module. The feature maps of the first few layers
are aggregated by the SGR module. The IAF module uses an attention mech-
anism to fuse the encoder output feature maps with those of the SGR module,
effectively suppressing interfering information such as noise. The MFE module
extracts the local features using parallel multiscale convolutions to reduce the
loss of small-sized polyps. The shallow feature supplementation structure con-
sists of the convolution branch and the SFS module. The convolutional branch
extracts shallow features with rich boundary information. The shallow features
are injected into the SFS module during the fusion process in the decoder stage
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to complement the areas with fuzzy boundaries, and the output feature maps of
the SFS module are used for prediction.

2.1 Convolutional Branch

Considering the advantage of CNN in extracting local features, LSSNet adds a
convolutional branch to extract shallow features. The shallow features can be
used as supplementary information for fuzzy areas. The convolutional branch is
shown in Fig. 1(b). Specifically, the input feature maps are first convolutionally
downsampled by the Down module, which is shown in Fig. 1(c). Then, multiscale
local features are extracted by the MFE module. Convolution operations with
kernel sizes of 3 × 3 and 1 × 1 extract the features and align the channels.
Finally, the shallow feature maps Si, i ∈ 1, 2, 3 are obtained.

2.2 Multiscale Feature Extraction Module

To address the problem that small-sized polyps are easily lost during encoder
downsampling, the multiscale feature extraction (MFE) module is intended to
improve the network’s capability for extracting local features. As shown in
Fig. 2(b), MFE consists of max pooling and depthwise convolutions in paral-
lel with kernel sizes of 3 × 3, 5 × 5, and 7 × 7, respectively, to obtain outputs
Mi, i ∈ 1, 2, 3, 4. The use of max pooling can emphasize the local texture in the
features [13]. The strong coupling relation [20] is established by multiplication
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operation during branch fusion, which can be expressed as Ci = Mi ×Mi−1, i ∈
2, 3, 4. Then, the results of the four branches are concatenated. Finally, the fea-
tures are enhanced after the inverted residual block(IRB) [10]. IRB is shown in
Fig. 2(a). The MFE module can be represented as the formula:

MFEout = IRB (Concat (M1, C2, C3, C4)) (1)

2.3 Semantic Gap Reduction Module

Since there are semantic gaps between different layers, the semantic gap reduc-
tion (SGR) module is designed to aggregate features from previous layers to
reduce the semantic gaps during feature fusion. SGR is depicted in Fig. 2(d).
Firstly, the feature maps from the previous layers passing through the MFE
module {L1, . . . , Li−1} are concatenated and the dimensions of the channels are
adjusted by the convolutional layer to obtain Ri

in. The formula is expressed as:

Ri
in = PWConv (Concat (L1, . . . , Li−1)) (2)

where PWConv is the pointwise convolution.
Then, Ri

in is split into two parallel branches according to the channel di-
mensions Ri

1, Ri
2. The Ri

1 branch uses depthwise convolution to extract spatial
features Ri

o1. The Ri
2 branch extracts the channel features Ri

o2 using the Squeeze-
and-Excitation (SE) module [4]. The formula is expressed as:

Ri
o1 = DWConv3×3

(
Ri

1

)
, Ri

o2 = SE
(
Ri

2

)
(3)

where DWConv3×3 is the depthwise convolution with kernel size of 3×3.
Finally, the feature maps of the two branches are multiplied for feature inter-

action and then via skip connections. Following the concatenation of the output
feature maps from these two branches, SGRi

out is obtained by fusing the features
between the channels using pointwise convolution. The formula is expressed as:

SGRi
out = PWConv

(
Concat

((
Ri

o1 ×Ri
o2 +Ri

o1

)
,
(
Ri

o2 ×Ri
o1 +Ri

o2

)))
(4)

2.4 Interlayer Attention Fusion Module

After aggregating local features, how to achieve feature supplementation is par-
ticularly important. For this reason, the interlayer attention fusion (IAF) mod-
ule is designed to use the attention mechanism to focus on the features that are
jointly important among the layers, and then carry out feature supplementation.
The IAF module can be seen in Fig. 2(e). Specifically, the feature maps used
for supplementation and the current layer feature maps go through the weight
matrix Wq and Wk, respectively, to obtain Query(Q) and Key(K). Value(V) re-
mains consistent with the input. The attention mechanism uses Expanded Win-
dow MHSA(EW-MHSA) [22]. Q, K, and V are divided into windows and the
attention matrix is calculated. V undergoes depthwise convolution to increase
the diversity of features [3]. Then, the windows are restored to their original in-
put size. Finally, the representativeness of the features is strengthened by IRB.
The formula is expressed as:

IAF out = IRB (EW −MHSA (Q,K, V ) +DWConv3×3 (V )) (5)
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2.5 Shallow Feature Supplementation Module

The shallow feature supplementation (SFS) module is designed to address the
challenge of polyps with ambiguous boundaries with normal regions. It can use
shallow features to supplement the ambiguous regions and re-extract features.
The SFS module is depicted in Fig. 2(c). Firstly, for layer i, the prediction map
Predi+1 obtained from the subsequent layer is used to calculate the fuzzy areas
with the formula Attni = 1− |Predi+1−0.5|

0.5 [24], and the fuzzy areas Attni are used
as the guidance information to multiply the elements with the shallow features
Si from the convolutional branch. Afterward, the features extracted from the
current layer MFEi are combined through elementwise summation to fuse the
information. Finally the enhanced feature maps SFSi

out are obtained after IRB.
The formula is expressed as:

SFSi
out = IRB (Attni × Si +MFEi) (6)

3 Experiments

3.1 Datasets and Evaluation Metrics

Five publicly available polyp segmentation datasets are used to evaluate LSSNet:
CVC-ClinicDB [1], KvasirSEG [5], ETIS-LaribPolypDB [15], CVC-ColonDB [16],
and EndoScene [17]. The dataset partitioning method remains consistent with
that proposed in [2,25]. The training dataset comprises a total of 1450 images,
including 900 images from KvasirSEG and 550 images from CVC-ClinicDB. The
remaining images from KvasirSEG and CVC-ClinicDB are used as visible test
sets to validate the learning ability of the model, while the other three datasets
are used as invisible test sets to validate the generalization performance of the
network.

Six metrics are used to evaluate the performance of LSSNet: mean Dice
score (mDice), mean IoU score (mIoU), mean absolute error (MAE), weighted
F-measure (Fw

β ), E-measure (Eξ), and S-measure (Sα).

3.2 Implementation Details

The overall network is implemented based on the PyTorch framework, and the
experiments are carried out using the NVIDIA A800 GPU. The AdamW opti-
mizer is used to train the model. The learning rate is set to 1e-4 and the batch
size is set to 8. The input image size is resized to 352×352. The model is trained
for 150 epochs, and the decay rate of the learning rate is 0.5 [6]. Data enhance-
ment strategies including random rotation, random flip, and color jitter are used
to increase the diversity of the training data and improve the robustness and
generalization of the model.
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Table 1. Comparison of experimental results across the five polyp datasets, with best
results indicated in bold.

Datasets Methods mDice mIoU Fw
β Sα Eξ MAE

ClinicDB UNet(MICCAI’15) 87.16 81.02 85.55 91.24 94.25 1.76
PraNet(MICCAI’20) 91.90 87.04 90.18 94.50 97.42 0.90
SANet(MICCAI’21) 92.41 87.40 90.85 94.70 97.61 0.90
LDNet(MICCAI’22) 92.34 87.77 91.57 94.31 97.16 0.98
CASCADE(WACV’23) 93.15 88.62 92.10 95.41 97.77 0.74
LSSNet(Ours) 94.48 90.04 93.94 95.83 98.84 0.59

Kvasir UNet(MICCAI’15) 86.34 79.70 82.64 88.12 92.28 4.59
PraNet(MICCAI’20) 90.81 85.99 89.17 91.91 95.47 2.68
SANet(MICCAI’21) 91.03 85.65 88.92 91.90 95.65 2.98
LDNet(MICCAI’22) 90.81 85.85 89.56 91.59 94.71 3.37
CASCADE(WACV’23) 91.87 86.97 90.78 92.67 96.37 2.34
LSSNet(Ours) 92.61 87.80 91.56 93.00 96.34 2.24

ETIS UNet(MICCAI’15) 63.65 54.82 55.12 77.90 81.73 2.66
PraNet(MICCAI’20) 76.54 68.38 69.88 86.05 87.99 1.81
SANet(MICCAI’21) 77.46 69.54 71.34 85.94 89.39 2.35
LDNet(MICCAI’22) 74.13 66.59 69.66 84.38 87.16 2.44
CASCADE(WACV’23) 81.99 74.90 78.16 89.16 92.34 1.47
LSSNet(Ours) 84.64 77.54 81.64 90.79 93.82 1.00

ColonDB UNet(MICCAI’15) 70.16 61.29 66.13 80.36 83.87 4.59
PraNet(MICCAI’20) 76.16 69.07 74.13 84.85 87.68 3.90
SANet(MICCAI’21) 76.75 68.76 74.03 84.51 88.18 4.06
LDNet(MICCAI’22) 79.68 71.77 76.79 85.71 89.87 3.52
CASCADE(WACV’23) 80.95 73.19 78.97 86.75 90.90 3.28
LSSNet(Ours) 82.03 74.13 80.31 87.27 91.68 2.80

EndoScene UNet(MICCAI’15) 86.35 78.27 82.02 91.33 94.44 1.20
PraNet(MICCAI’20) 88.55 81.32 85.21 92.94 96.02 0.83
SANet(MICCAI’21) 87.35 80.48 84.46 92.50 94.71 0.90
LDNet(MICCAI’22) 88.76 81.87 85.92 92.87 95.82 0.85
CASCADE(WACV’23) 87.69 80.69 84.67 92.56 94.93 0.96
LSSNet(Ours) 89.38 82.21 86.32 93.03 96.66 0.67

3.3 Results

LSSNet is compared with five SOTA methods, including UNet[9], PraNet[2],
SANet[19], LDNet[23], and CASCADE[8], on five publicly available polyp datasets.
To ensure fair comparisons, the codes for the comparison networks are re-run
with the same training strategies. The comparison results between LSSNet and
other methods are shown in Table 1. LSSNet achieves the best mDice, mIoU on
all five datasets, Specifically, a significant improvement on ClinicDB and ETIS,
with 1.33% and 2.65% improvement in mDice, respectively, when compared to
the best results among the other methods. It should be noted that in the results
on Kvasir, the Eξ score of LSSNet is slightly lower than CASCADE by 0.03%,
which is almost the same, but the other scores are better than CASCADE. The
visualization results of different methods are displayed in Fig. 3.
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Fig. 3. Qualitative results of different methods.

Table 2. Ablation studies of LSSNet on CVC-ClinicDB and ETIS datasets.

MFE IAF SGR SFS ClinicDB ETIS
mDice mIoU MAE mDice mIoU MAE

% ! ! ! 92.90 88.23 0.78 80.74 73.45 1.20
! % % ! 93.15 88.68 0.69 82.60 75.54 1.57
! ! ! % 92.92 88.38 0.76 81.57 73.93 1.42
! ! ! ! 94.48 90.04 0.59 84.64 77.54 1.00

3.4 Ablation Experiments

A series of ablation experiments are carried out on the CVC-ClinicDB and ETIS-
LaribPolypDB datasets to confirm the importance and effectiveness of the LSS-
Net core modules. Specifically, the MFE module, IAF and SGR module, and
SFS module are deleted on the basis of LSSNet, respectively. The results are
shown in Table 2. On the CVC-ClinicDB dataset, deleting the MFE module de-
creases the mDice and mIoU scores the most, 1.58% and 1.81%. Since the SGR
module is designed to assist the IAF module, the IAF and SGR modules are
deleted together, and the mDice and mIoU scores decrease by 1.33% and 1.36%.
Deleting the SFS module decreases the mDice and mIoU by 1.56% and 1.66%.
The experimental results show that the core modules of LSSNet are all effective.

4 Conclusion

A high-precision network for colon polyp segmentation based on local feature
supplementation and shallow feature supplementation is proposed to solve the
problems of small-size polyp loss, fuzzy boundaries, and noise interference in
colonoscopy images in polyp segmentation. The LSSNet adds a local feature
supplementation structure to the encoder-decoder structure. In addition, rich
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boundary features are added to the network through shallow feature supplemen-
tation, which makes the network prediction more accurate. Experiments have
demonstrated the effectiveness of LSSNet, which can be used to assist in the
diagnosis of colonic polyps, making the diagnosis more precise and automated.
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