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Abstract. We propose PHIMO, a physics-informed learning-based mo-
tion correction method tailored to quantitative MRI. PHIMO lever-
ages information from the signal evolution to exclude motion-corrupted
k-space lines from a data-consistent reconstruction. We demonstrate the
potential of PHIMO for the application of T2* quantification from gra-
dient echo MRI, which is particularly sensitive to motion due to its sen-
sitivity to magnetic field inhomogeneities. A state-of-the-art technique
for motion correction requires redundant acquisition of the k-space cen-
ter, prolonging the acquisition. We show that PHIMO can detect and
exclude intra-scan motion events and, thus, correct for severe motion ar-
tifacts. PHIMO approaches the performance of the state-of-the-art mo-
tion correction method, while substantially reducing the acquisition time
by over 40%, facilitating clinical applicability. Our code is available at
https://github.com/compai-lab/2024-miccai-eichhorn.
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1 Introduction

Quantitative magnetic resonance imaging (MRI) estimates physical tissue prop-
erties from a series of qualitative images with varying imaging parameters. In
contrast to commonly employed qualitative structural imaging, this facilitates a
consistent extraction of potential biomarkers across scanners and hospitals. With
typical voxel sizes of 2-3 mm, the resolution of quantitative MRI is commonly
lower than for qualitative MRI due to longer acquisition times.

Patient motion is a challenge for brain MRI in general, potentially imped-
ing successful diagnoses. Quantitative MRI is particularly sensitive to motion
due to its intrinsically long imaging times. In recent years, deep learning-based
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approaches have demonstrated promising results for motion correction (MoCo)
of brain MRI [17]. MoCo has previously been addressed as an image denoising
problem, with convolutional [2,19] or generative adversarial networks [9,12,15].
Yet, exclusively relying on image data, these methods cannot ensure consistency
with the acquired raw k-space data, posing a potential obstacle to their clinical
translation. Data consistency (DC) is only achievable by integrating MoCo in
the image reconstruction process [5,8,16]. Nevertheless, previous methods have
mostly been developed for higher resolution qualitative MRI or - in the context
of quantitative MRI - they do not enforce DC [19].

In this work, we propose physics-informed motion correction (PHIMO), which
utilises information from the quantitative parameter estimation process to detect
and exclude motion-corrupted k-space lines from a data-consistent reconstruc-
tion. We demonstrate the potential of PHIMO for the application of T2* quan-
tification from gradient echo (GRE) MRI, which enables oxygenation-sensitive
imaging as part of the multi-parametric quantitative BOLD (mqBOLD) proto-
col [7]. GRE MRI is highly sensitive to motion due to the influence of magnetic
field inhomogeneities, especially for larger echo times [13]. The current mqBOLD
MoCo method [14] relies on redundant k-space acquisition, which significantly
increases the total acquisition time from 3 min 39 s to 6 min 25 s.

To the best of our knowledge, this is the first MoCo approach that incor-
porates information from the quantitative parameter estimation process as a
physics-informed loss. Our contributions are three-fold:

1. We train a single unrolled reconstruction network to recover high-quality
images from undersampled k-space data for varying rates of excluded lines.

2. We train a multi-layer perceptron (MLP) to predict exclusion masks for
motion-corrupted lines. Utilising the T2* decay information allows us to
perform MoCo in a self-supervised fashion for each subject individually.

3. We evaluate PHIMO on multicoil raw data acquired with and without head
motion and compare the results to the current mqBOLD MoCo which re-
quires redundant data acquisition.

2 Background

2.1 Motion during MR Image Acquisition

The MRI multicoil forward model in the presence of motion includes the sam-
pling mask St, incorporating the line-wise k-space acquisition pattern, the Fourier
transform F , the coil sensitivity maps C, and the motion transform Ut, which
are applied to the motion-free image x for each time point t, yielding the motion-
affected k-space data ŷ [1]:

ŷ =
T∑

t=1

StFCUtx (1)

Head motion is typically treated as rigid-body motion with random timings due
to the patient’s carelessness or discomfort. Consequently, Ut consists of rotation
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and translation transforms, but can also incorporate second-order motion effects,
such as motion-induced field inhomgeneity changes [3]. Under the assumption
that the patient approximately stays in one position except for individual motion
events, an undersampling mask Ω exists, which excludes the individual motion
events, so that the masked motion-corrupted data is close to the masked motion-
free data y:

Ωŷ ≃ Ωy (2)

2.2 T2* Quantification from Multi-Echo GRE MRI

The effective transverse relaxation time T2* can be quantified from a series of
GRE images x = [x1, ..., xE ] acquired at various echo times te for e = 1, ..., E.
The time evolution of the signal magnitude se = |xe| for a single voxel is com-
monly modelled as a mono-exponential decay [13]:

se = s0 · exp
(
− te
T2∗

)
(3)

T2* and the signal magnitude s0 at te = 0 follow from least-squares fitting.

3 Methods

3.1 PHIMO

Inspired by MoCo through outlier-rejecting bootstrap aggregation [15], we use
Eq. 2 to split MoCo into two subproblems: undersampled reconstruction and,
in contrast to [15], a physics-informed detection of motion-corrupted k-space
lines. Specifically, Eq. 2 allows us to train a reconstruction network on randomly
undersampled motion-free data Ωy and, during inference, recover a high-quality
image from the undersampled motion-corrupted data Ωŷ, given that Ω excludes
the motion-corrupted k-space lines. An overview of PHIMO is provided in Fig. 1.

Supervised Training of Unrolled Reconstruction First, we train an un-
rolled multi-echo reconstruction network on randomly undersampled motion-free
data. The reconstruction alternates five times between a CNN-based denoiser
and a gradient descent DC step (see Fig. 1A), without weight sharing between
iterations and the step sizes of the gradient descent layers implemented as learn-
able parameters [4]. The denoiser consists of five 2D convolutional layers (kernel
size: 3 × 3, 64 filters) and ReLU activations. Real and imaginary parts of the
input image, as well as multiple echoes are stacked in the channel dimension.
The network is trained for 4000 epochs with Adam [11] and a batch size of eight.
We use a learning rate of 1× 10−4 and structural similarity (SSIM) [18] as loss,
calculated on real and imaginary parts separately. During training, the rate of
excluded lines in the undersampling masks is varied between 0.05 and 0.5, with
a fixed fully-sampled center of 10 lines.
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Fig. 1. Overview of PHIMO. (A) Training an unrolled reconstruction network on ran-
domly undersampled motion-free multi-echo images. (B) MoCo of motion-corrupted
data by optimising an MLP to predict slice-wise exclusion masks in a self-supervised
fashion for each subject individually. (C) Calculation of empirical correlation coefficient
as physics-informed loss for optimising the MLP in (B).

Self-Supervised k-Space Line Detection In the presence of motion-cor-
rupted data, we perform MoCo by detecting and excluding motion-corrupted k-
space lines from the reconstruction. Therefore, we train an MLP for each subject
to predict an undersampling mask that excludes motion-corrupted k-space lines
(Fig. 1B). We introduce a physics loss, which takes into account that for multi-
echo GRE MRI, motion increasingly impacts the image with increasing echo
time. Thus, motion disturbs the mono-exponential signal evolution (Eq. 3) [14].
As illustrated in Fig. 1C, the physics loss compares the reconstructed signal
intensities srece and the “fitted” intensities sfite resulting from inserting the fitted
parameters T2* and s0 into Eq. 3. We calculate the physics loss Lphys as the
empirical correlation coefficient, with the mean over all echoes s = 1

E

∑
e se:

Lphys =

∑
e(s

rec
e − srec)(sfite − sfit)√∑

e(s
rec
e − srec)2(sfite − sfit)2

(4)

Lphys is calculated voxel-wise across echoes and averaged within a brain mask ex-
cluding cerebrospinal fluid (CSF). We combine Lphys with a regularisation Lreg

on the variation of the predicted masks for adjacent slices. Following the inter-
leaved, multi-slice acquisition scheme, Lreg is calculated between all Z pairs of
predicted masks, Ωz and Ωz+2, within the batch:

L = Lphys + λLreg = Lphys + λ
Z∑

z=1

| Ωz −Ωz+2 | (5)
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The MLP embeds the slice index z using a mapping function f : R1 → R
3,

followed by two fully connected layers of size 23 and 46 and a sigmoid activation.
It results in an output mask of size 92, with values ranging between 0 and 1. We
do not binarise the output mask to allow for a smooth loss minimisation. Note
that we also do not restrict the output masks to a fully-sampled center to allow
for an exclusion of motion-corrupted lines in the k-space center. The MLP is
optimised with Adam, a batch of 4 slices and a regularisation strength of λ = 0.1.
Differentiable least-squares fitting is performed with torch.linalg.lstsq. We
perform early stopping when Lreg does not improve for 50 epochs. Optimising
the MLP takes less than 14 minutes per subject.

3.2 Data

We have acquired multi-coil k-space data from 15 volunteers (26.6 ± 2.8 years,
5 females) on a 3T Philips Elition X MR scanner (Philips Healthcare, Best, The
Netherlands), using a multi-slice 2D GRE sequence (12 echoes, TE1=∆TE=5 ms,
TR=2300 ms, voxel size: 2×2×3 mm, 32-channel head coil). The study has been
approved by the local ethics committee (approval numbers 440/18 S-AS, 2023-
386-S-SB). We have conducted repeated scans under two conditions: without
voluntary head motion and with the subject instructed to move randomly, imi-
tating sneezing or coughing. In one case, referred to asmotion timing experiment,
we have provided precise timings for the volunteer to move, aiming to assess the
motion detection performance of PHIMO. Additionally, we have acquired half-
and quarter-resolution data in both conditions to compare PHIMO to the cur-
rent mqBOLD MoCo (“HR/QR-MoCo”) [14]. The datasets are divided subject-
wise into train, validation, and test sets (6/2/7 subjects), including only slices
with more than 10% brain voxels (193/61 train/validation slices). For testing,
we manually exclude inferior slices to disentangle motion from severe suscepti-
bility artifacts, which need to be addressed separately [6], resulting in 128 test
slices. The input of the reconstruction network is normalised by the maximum
magnitude of the zero-filled image.

3.3 Evaluation

We compare PHIMO to the state-of-the-art HR/QR-MoCo [14] and outlier-
rejecting bootstrap aggregation (OR-BA) [15]. The latter averages reconstruc-
tions with 15 random masks, for which we train a separate unrolled reconstruc-
tion network with variable density masks at a fixed exclusion rate of 0.5. To
differentiate between the methods’ performances for more severe and minor mo-
tion, we categorise the seven test subjects based on the visual quality of the
motion-corrupted images, resulting in four subjects with severe and three with
minor motion. T2* maps are evaluated based on mean absolute error (MAE),
SSIM and feature similarity (FSIM) [20]. Therefore, all acquisitions are aligned
to the motion-free acquisition via 3D registration of the stacked slices. Wilcoxon
signed rank tests and False-Discovery Rate correction are employed for statisti-
cal testing. HR/QR-MoCo and segmentation of anatomical scans are performed
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in MATLAB (R2022b) and SPM12 with custom programs [10]. Other computa-
tions are performed in Python 3.8.12, using PyTorch 2.0.1 and MERLIN [4].

4 Experiments and Results

In Fig. 2 we compare exclusion masks derived from OR-BA and PHIMO with
the reference mask inferred from the verbal instructions of the motion timing
experiment. This example demonstrates that PHIMO can detect individual mo-
tion events. In contrast, OR-BA on average assigns nearly uniform weights to
all k-space lines and cannot detect specific lines.

Example T2* maps in Fig. 3 demonstrate that - in contrast to OR-BA -
PHIMO effectively suppresses motion artefacts for the subject with severe mo-
tion, close to the performance of HR/QR-MoCo. In the case of minor motion,
OR-BA leads to blurring, while PHIMO preserves the image quality and is com-
parable to the motion-free reference. Note that, despite the volunteer’s coopera-
tion, residual motion may still be present in the so-called motion-free reference
acquisition.

The qualitative observations are supported by the quantitative analysis in
Fig. 4. In case of more severe motion, all metrics are notably improved for
PHIMO, approaching the values of HR/QR-MoCo. OR-BA yields inconsistent
results: for MAE it results in significantly but not substantially worse values
than PHIMO, while PHIMO more clearly outperforms OR-BA for the structure-
sensitive metrics SSIM and FSIM. For minor motion, the values for the motion-
corrupted maps are already satisfactory, but PHIMO and HR/QR-MoCo achieve
small improvements, particularly in white matter regions. The performance of
OR-BA remains inconsistent across the evaluated metrics.

5 Discussion and Conclusion

We propose PHIMO, a physics-informed MoCo method tailored to quantitative
MRI. To the best of our knowledge, PHIMO is the first approach that incor-
porates information from the signal evolution in order to down-weight motion-
corrupted k-space lines in a DC-based reconstruction. For the application of T2*

OR-BA PHIMO Reference OR-BA PHIMO Reference

Slice 16Slice 15

Fig. 2. Exclusion masks of two example slices for the motion timing experiment (single
subject), derived from OR-BA, PHIMO and the verbal instructions (reference). The
corresponding reconstructions with reduced motion artefacts for PHIMO are provided
in the supplementary material (Fig. S1).
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(3 min. 39s)
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Motion-free
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Fig. 3. Example T2* maps for subjects with severe (A) and minor motion (B). From
left to right: motion-corrupted (No MoCo), OR-BA, proposed PHIMO, HR/QR-MoCo
and motion-free reference. Pink arrows indicate (suppressed) motion artifacts, white
arrows increased blurring for OR-BA. Gray/white matter (GM/WM) MAE values in
ms as well as SSIM values relative to the motion-free maps are indicated in the top
left corner. The corresponding exclusion masks of OR-BA and PHIMO are presented
in the supplementary material (Fig. S2).

MAE (↓) SSIM (↑) FSIM (↑)

Strong 
motion

Minor 
motion

No MoCo
OR-BA
PHIMO
HR/QR-
MoCo

Fig. 4. Image quality metrics MAE, SSIM and FSIM, calculated relative to the motion-
free T2* maps, for the 4 test subjects with severe (top) and the 3 test subjects with
minor motion (bottom). All metrics are calculated on T2* maps registered to the
motion-free reference and evaluated in gray and white matter, separately. Gray brackets
indicate comparisons with no statistical significance (N) at a level of p = 0.001.
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quantification from multi-echo GRE MRI, we have demonstrated that PHIMO
can detect motion events, suppress strong motion artefacts and thus, significantly
improve the quality of motion-corrupted T2* maps.

To investigate the impact of our proposed physics-informed loss for excluding
motion events and satisfying equation 2, we have compared PHIMO to OR-BA,
which we have implemented as a bootstrap aggregation averaging reconstructions
with random masks, in line with the idea of Oh et al. [15]. The visual examples in
Fig. 3 and the structure- and feature-based quantitative metrics SSIM and FSIM
in Fig. 4 demonstrate that PHIMO notably outperforms OR-BA. A reason for
that is that OR-BA samples random masks and, thus, down-weights all k-space
lines uniformly on average (Fig. 2), thereby lacking the ability to adequately
detect and exclude corrupted lines.

MAE does not seem to reflect PHIMO’s - visually apparent - superiority
to OR-BA in suppressing strong motion artefacts. In general, reliable image
quality evaluation is an ongoing challenge in the MoCo and image reconstruc-
tion community [17]. In our case, MAE’s inconsistency could be due to PHIMO
excluding central k-space lines in the case of detected motion events, which al-
lows for a reduction of strong motion artefacts, as highlighted in Fig. 3. At the
same time, excluding central k-space lines might lead to some T2* estimation
errors, since the k-space center contains overall signal intensity and contrast
information. Nevertheless, it appears preferable to exclude severe motion out-
liers while slightly misestimating T2* (PHIMO) rather than including motion
measurements and not correcting severe artefacts (OR-BA).

We have further compared PHIMO to HR/QR-MoCo [14], which is the state-
of-the-art within the mqBOLD technique [10]. HR/QR-MoCo combines the
motion-corrupted scan with additionally acquired half- and quarter-resolution
scans, effectively sampling the k-space center three times. The performance of
PHIMO as well as HR/QR-MoCo depends on the exact motion pattern. Both
approaches build on the assumption that the subject generally maintains a con-
sistent position, interrupted by random motion events. Additionally, PHIMO is
more severely impacted by subject motion that occurs during the acquisition of
the k-space center, since excluding low-frequency contrast information affects the
reconstruction quality more severely than missing high-frequency information
on edges and details. In our qualitative and quantitative comparison, HR/QR-
MoCo outperforms PHIMO for more severe and minor motion scenarios, as it
essentially results in a weighted average of three acquisitions, which even for a
motion-free scan leads to noise reduction. However, PHIMO achieves a competi-
tive image quality, particularly when taking into account that it does not rely on
additionally acquired half- and quarter-resolution scans. Consequently, PHIMO
reduces the total acquisition time by over 40 %, which is a key for facilitating
clinical applicability of the entire mqBOLD technique.

Conclusion We have introduced PHIMO, a MoCo method tailored to quantita-
tive MRI, which utilises information from the MR signal evolution to detect mo-
tion events with a subject-specific, self-supervised MLP. We have demonstrated
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PHIMO’s capabilities in detecting and adequately down-weighting motion-cor-
rupted k-space lines in a DC-based reconstruction for T2* quantification from
GRE MRI. Compared to the state-of-the-art motion correction method, which
requires redundant data acquisition, PHIMO achieves competitive image quality
and reduces the overall acquisition time from 6 min 25 s to 3 min 39 s, positively
impacting clinical workflow. Importantly, PHIMO is applicable to various other
quantitative MRI tasks, as long as the parameter estimation is differentiable.
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