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Abstract. Counterfactual generation is used to solve the problem of lack of in-
terpretability and insufficient data in deep diagnostic models. By synthesize 
counterfactual images based on an image-to-image generation model trained with 
unpaired data, we can interpret the output of a classification model according to 
a hypothetical class and enhance the training dataset. Recent counterfactual gen-
eration approaches based on autoencoders or generative adversarial models are 
difficult to train or produce realistic images due to the trade-off between image 
similarity and class difference. In this paper, we propose a new counterfactual 
generation method based on diffusion models. Our method combines the class-
condition control from classifier-free guidance and the reference-image control 
with attention injection to transform the input images with unknown labels into 
a hypothesis class. Our methods can flexibly adjust the generation trade-off in 
the inference stage instead of the training stage, providing controllable visual ex-
planations consistent with medical knowledge for clinicians. We demonstrate the 
effectiveness of our method on the ADNI structural MRI dataset for Alzheimer’s 
disease diagnosis and conditional 3D image2image generation tasks. Our codes 
can be found at https://github.com/ladderlab-xjtu/ControlCG. 

Keywords: Counterfactual Reasoning, Diffusion Model, Data Augmentation, 
Attention Injection. 

1 Introduction 

Deep learning techniques have shown promising performance in medical diagnostics 
but still face challenges like poor interpretability [3] and limited generalizability due to 
small training datasets [2]. Counterfactual generation [6, 11] translates the input image 
into the image with a hypothetical class label. The generated images can be used as data 
augmentation for model training and the displayed differences can be used as saliency 
maps for detailed interpretation of the model outputs. In this paper, we present a novel 
counterfactual generation method based on diffusion models (DMs) [7] with classifier-
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free guidance [8] and attention injection [16]. As the schematic diagram shown in Fig-
ure 1, our method trains a general model that can flexibly transforms images between 
𝑁 different categories, rather than an expert model that is fixed to transform images 
between only two specified categories [13, 15]. 

 
Fig. 1. The overview of our controllable counterfactual generation. Given input image 𝑌0 and 

target class 𝐶, the diffusion model can generate counterfactual image 𝑋𝑐of 𝑌. 

Our approach involves three key phases. Initially, we separately develop a baseline 
classifier and a conditional diffusion model, where the classifier assesses generation 
quality, including image similarity and class distinction, while the diffusion model cre-
ates images from noise based on class conditions. Next, we produce counterfactual im-
ages of hypothetical classes using the diffusion model, employing attention injection 
during inference to shift from the original image to a target class, maintaining voxel-
wise similarity but altering class identity. Finally, these generated images serve as novel 
data augmentation sources, enabling us to refine the baseline classifier. We evaluate 
our method on a challenging image-to-image task, i.e., Alzheimer's Disease (AD) ver-
sus Cognitively Normal (CN) differentiation within the Alzheimer's Disease Neuroim-
aging Initiative (ADNI) dataset [10]. This challenging task involves 1) global structural 
changes like in ventricle volume, 2) local structural changes in small regions like hip-
pocampus, and 3) textural changes between gray and white matter. We benchmark our 
results against other 3D image-to-image techniques. 

2 Related Work 

Counterfactual generation is used to solve the problem of lack of interpretability and 
insufficient data in deep learning-based early disease diagnoses by generating a 
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modified image as close as to the input image but different in class. There naturally 
exists a trade-off between image similarity and class difference since the more similar 
in images, the less different in class. More importantly, reliably capturing such small 
image differences associating with label changes (e.g., early disease) is itself of critical 
value in early diagnosis and intervention. 

 Some works based on autoencoders and latent shift try to partially solve the trade-
off [4]. An image is encoded to latent variables, shifted to hypothetical class with the 
gradient of a classifier, and further decoded to images, offering the steepest path to 
given hypothetical class to improve image similarity. However, this may result in un-
realistic images since the smoothness of latent space is not guaranteed and the gradient 
of classifier may lead to out-of-distribution direction. Our method can control the trade-
off without losing the realism quality of our base noise-tp-image model.  

Other works based on Generative Adversarial Networks (GANs) adopt regulariza-
tion tricks like cycle-consistent [17] and sparsity [11] to balance the trade-off among 
image realism, image similarity, and class difference. However, GANs are hard to train 
[1] and regularization terms require hyperparameter tuning in the training stage. In our 
method, the trade-off can be controlled flexibly during inference. 

Recently, DDPMs [7] have gained attention due to their higher image quality than 
GANs in generation [5]. They are also widely used for image-to-image translation, es-
pecially in medical area. Some works [15] adopt classifier [7] or classifier-free[8] guid-
ance for class conditioning and DDIM inversion [14], transforming the brain tumor to 
brain tissue and calculate difference maps for anomaly detection. In anomaly detection, 
they care more about difference maps than generated images and they fail in generate 
realistic images, especially in ventricle, as has been reported in existing studies [15]. 
Therefore, these existing diffusion-based methods may fail in our task of learning in-
terpretable deep diagnostic models, as here we focus on both saliency maps for detailed 
explanations and realistically generated images for data augmentation. 

3 Method 

Counterfactual reasoning [6, 11] aims to give visual explanations through the subject's 
image transitions from one class to another. The difference between the original image 
and the transformed image can be used as the saliency map to explain the prediction 
decision of the classifier. The saliency maps are expected to be related to the prior 
knowledge of the medical expert. In another word, the difference should only appear in 
the disease-related regions and not affect the disease-irrelevant individual characteris-
tics. To do so, we adopt a base diffusion model for high quality generation [7], classi-
fier-free guidance [8] for controllable generation, and attention injection [16] for con-
trollable translation. We control the generation results in the inference stage by tuning 
the guidance scale instead of hyperparameter tuning for the weights of the regulariza-
tion terms in the loss function during the training stage. 
Diffusion Models. Diffusion process [7] is a kind of Markov chains that gradually adds 
random noise 𝜀𝑡~𝑁(0, 𝐼) to ground-truth image 𝑥0~𝑝(𝑥0) and get 𝑥𝑇 in T timesteps. 
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At each step t from 0 to N, we get the noisy image from previous timestep with the 
preset diffusion scheduler 𝛼𝑡 in the forward process: 

𝑥𝑡 = √𝛼𝑡𝑥𝑡−1 + √1 − 𝛼𝑡𝜀𝑡 , 𝑡 = 1,2, … , 𝑇, (1) 
and get the noisy image from image 𝑥0 by making 𝜀~𝑁(0, 𝐼) and 𝛼̅𝑡 = ∏ 𝛼𝑡

𝑇
𝑡=1 : 

𝑥𝑡 = √𝛼𝑡̅̅ ̅𝑥0 + √1 − 𝛼𝑡̅̅ ̅𝜀, 𝑡 = 1,2, … , 𝑇. (2) 
A diffusion model 𝜀𝜃(𝑥𝑡 , 𝑡) is trained to estimate 𝜀𝑡 = 𝜀𝜃(𝑥𝑡 , 𝑡) from 𝑥𝑡, which can be 
used to generate 𝑥0 from randomly sampled noise 𝑥𝑇~𝑁(0, 𝐼) in backward process: 

𝑥𝑡−1 = √
𝛼𝑡 − 1

𝛼𝑡

𝑥𝑡 + (√
1

𝛼𝑡−1

− 1 − √
1
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− 1) 𝜀𝜃(𝑥𝑡 , 𝑡), 𝑡 = 1,2, … 𝑇. (3) 

Classifier-Free Guidance. Classifier-free guidance [8] is designed to get the trade-off 
between realism and diversity in conditional image generation with diffusion models. 
The joint-trained diffusion model can estimate 𝜀𝑡 with or without class condition 𝑐 by 
randomly making 𝑐 = ∅ with the probability 𝑝𝑢𝑛𝑐𝑜𝑛𝑑 : 

𝑥𝑡−1 = √
𝛼𝑡 − 1

𝛼𝑡

𝑥𝑡 + (√
1

𝛼𝑡−1

− 1 − √
1

𝛼𝑡

− 1) 𝜀𝜃(𝑥𝑡 , 𝑐, 𝑡, 𝑤), 𝑡 = 1,2, … 𝑇. (4) 

Then the classifier-free guidance scale 𝑤 is applied to reach the trade-off by mixing the 
conditional and unconditional 𝜀𝑡 and properly tuning 𝑤 in the inference time: 

𝜀𝜃(𝑥𝑡 , 𝑐, 𝑡, 𝑤) = (1 + 𝑤)𝜀𝜃(𝑥𝑡 , 𝑐, 𝑡) − 𝑤𝜀𝜃(𝑥𝑡 , ∅, 𝑡). (5) 
The greater 𝑤 indicates better sample quality and worse diversity, vice versa. 

Attention Injection. Attention injection [16] is applied for class-conditional image-to-
image translation task with diffusion model. A conditional U-Net diffusion model with 
paired self-attention and cross-attention blocks can generate 𝑥0

𝑐 from 𝑥𝑇~𝑁(0, 𝐼) and 
the class condition 𝑐 [12]. The diffusion model uses self-attention blocks to get image-
related and class-independent information, and use cross-attention blocks to fuse class-
related information. With such model, attention injection allows the translation from a 
reference image 𝑦0 with unknown class to a similar image 𝑥0

𝑐. In the timestep of 𝑡, we 
have 𝑦𝑡  from 𝑦0 with Eq. (2) and the  𝑙𝑡ℎ cross-attention layer uses the latent vector 
ℎ = ℎ𝑙(𝑦𝑡 , 𝑡) from previous self-attention layer as the query and the class 𝑐 as the key 
and value to get ℎ𝑡,𝑐 = ℎ𝑙+1(𝑦𝑡 , 𝑡, 𝑐) as outputs, such as: 

ℎ𝑙(𝑦𝑡 , 𝑡) = 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 = ℎ(𝑦𝑡 , 𝑡)), (6) 
ℎ𝑙+1(𝑦𝑡 , 𝑡, 𝑐) = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄 = ℎ𝑙(𝑦𝑡 , 𝑡), 𝐾, 𝑉 = 𝑐). (7) 

Here ℎ(𝑦𝑡 , 𝑡)  contains condition-independent information of noisy image 𝑦𝑡  as the 
middle results for self-attention blocks for image translation from reference image 𝑦0: 

ℎ𝑙(𝑥𝑡 , 𝑡, 𝑦𝑡) = 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄 = ℎ(𝑥𝑡 , 𝑡), 𝐾, 𝑉 = (ℎ(𝑦𝑡 , 𝑡) ⊕ ℎ(𝑥𝑡 , 𝑡))), (8) 
where ⊕ indicates channel concatenation. We simplify this process as: 

𝜀𝜃(𝑥𝑡 , 𝑐, 𝑡|𝑦𝑡) = 𝜀𝜃(𝑥𝑡 , 𝑐, 𝑡) ⊗ 𝜀𝜃(𝑦𝑡 , 𝑐, 𝑡), (9)

where ⊗ denotes attention injection. The diffusion model can generate image with 
class condition 𝑐 and reference image condition 𝑦0 by Eqs. (2), (4), (5), and (9). 
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4 Experiments 

Dataset and Preprocessing. We evaluate our method on the 3D brain Magnetic Reso-
nance (MR) images from the ADNI dataset. After removing subjects appearing in both 
ADNI-1 and ADNI-2 from ADNI-2, there are 200 AD and 231 CN subjects in ADNI-
1, and 159 AD and 205 CN in ADNI-2. We randomly choose the first-visit images from 
the 80% CN and AD subjects from ADNI1 for training and 20% for validation. We 
choose CN and AD subjects form ADNI2 for testing. The images are skull-stripped, 
registered to MNI space, center-cropped to 160×192×160 and min-max normalized 
to values with 99.5 percentile as max. The classification model is trained with full-size 
images and the diffusion model is trained with down-sampled images of 80×96×80. 

Baseline Model Training. We train a baseline classifier based on a 3D-DenseNet [9] 
and a baseline conditional diffusion model for noise-to-image generation. The classifier 
is trained with SGD optimizer with a learning rate of 3×10-2 and a batch size of 4. The 
diffusion model is trained with Adam optimizer with a learning rate of 10-4 and a batch 
size of 1. It consists of 3 down blocks and 3 up blocks with relevant the number of 
channels of 64,64, and 128. The 3rd down block and 1st up block consists of a self-
attention layer and a cross-attention layer for class conditional generation. We use v-
prediction and pyramid noise for better performance. The whole training takes about 
20 hours on an NVIDIA RTX 4090 GPU. We use PyTorch 2.0.1 and MONAI 1.2 as 
software framework.  

Saliency Map Generation. We get the absolute difference maps between input images 
and respectively generated images as saliency maps. Such saliency maps are threshoded 
according to individual brain masks to focus on foreground brain regions. 

Data Augmentation. We evaluate the quality of generated images with data augmen-
tation as the downstream task. We compare performance of classifier with generated 
images as extra training data among all methods. For a fair comparison, we down-sam-
pled and up-sampled original training dataset and up-sampled extra training dataset to 
keep the resolution and blur level the same for all methods. We use log uniform to 
search for the best learning rate and hyperparameters for each method separately. 

Competing Methods and Evaluation Metrics. To evaluate our method, we compare 
itto the ILVR [3] and DDIM inversion [13-15]. For qualitative analysis, we show, in 
Fig. 3, one randomly picked subject of AD, and apply all comparing methods to gener-
ate the CN/AD image. For quantitative analysis, we evaluate from three aspects: the 
image similarity at the per-subject level, class difference and image realism both at the 
distribution level.  

We first evaluate image similarity between the paired reference image and generated 
image with SSIM and MSE. Higher SSIM and lower MSE indicate better performance 
in image similarity. Then, we evaluate class difference with FID between datasets of 
different labels, where rCN, rAD, gCN and gAD indicate the real CN, real AD, gener-
ated CN and generated AD, respectively. A method with higher FID in rCN vs. gAD, 
and rAD vs. gCN, and lower FID in rCN vs. gCN and rAD vs. gAD indicates better 
performance in class difference. Finally, we evaluate realism between datasets of all 
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real images and all generated images with FID. We use our pre-trained diagnostic 
model as feature extractor for calculating all the FID. In Table 2, ILVR-1 indicates 
setting with n=2, T=250, ILVR-2 for n=2, T=500, and ILVR-3 for n=4, T=250.  

As an ablation study and a demonstration of controllable generation, we show the 
generated mages for different classifier-free guidance on a same AD subject in Fig. 2. 
The image similarity, class difference and image realism for the total generated dataset 
are also evaluated in Table 3 in the same way.  Furthermore, we adopt data augmenta-
tion as a downstream task for evaluating the total generated dataset. We compare the 
classification results trained with extra data generated by different methods. 

 Input AD w=1 w=2 w=3 w=4   w=5 w=6 

toA
D

 

 

Saliency m
ap 

toC
N

 
Saliency m

ap 
Fig. 2. Controllable generations for our method with different guidance scale 𝑤. The greater 𝑤 
indicates better image difference and worse similarity. The left-to-right changes indicate differ-
ent maps can be manually controlled by guidance scale 𝑤. The images are shown in range of 0-
1 and saliency maps are shown in range of -1~1. 

Table 1. Controllable generation quality when given different hyperparameters for inference. 
Bold numbers indicate the best, underlined 2nd and italic 3rd. 

𝒘 SSIM↑ MSE↓ rCN2gAD↑ rAD2gAD↓ rCN2gCN↓ rAD2gCN↑ FID↓ 
1.0 0.823  0.010  163.605  28.782  15.014  55.240  19.739  
2.0 0.827  0.010  153.562  25.802  16.509  52.309  18.304  
3.0 0.831  0.010  141.943  23.014  17.957  49.345  17.052  
4.0 0.835  0.010  126.626  19.688  18.466  46.430  15.843  

5.0 0.838  0.009  99.339  18.602  20.315  42.839  13.504  
6.0 0.841  0.009  58.034  27.735  19.586  43.190  11.331  
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Fig. 3. Counterfactual generation results for a randomly picked CN subject with different 
method. Our results are consistent with anatomical knowledge in the enlarged temporal poles of 
the lateral ventricles, the enlargement of the extracerebral space in the anterior Sylvian sulcus 
and the enlargement of the posterior region of the right lateral ventricle. 

Table 2. Comparison among different methods for image similarity, class difference and real-
ism. Methods that fail in any metric are marked with a deletion line in red. Our method did not 
fail in any metric, demonstrating more consistent performance across all measures. 

Method SSIM↑ MSE↓ rCN2gAD↑ rAD2gAD↓ rCN2gCN↓ rAD2gCN↑ FID↓ 

ILVR-1 0.821 0.014 151.521 46.296 31.927 158.631 36.323 
ILVR-2 0.824 0.015 158.276 65.352 47.995 187.055 52.622 
ILVR-3 0.914 0.004 46.162 46.457 50.646 55.748 26.522 
DDIM250 0.951 0.003 103.977 4.216 42.894 26.011 18.177 
DDIM500 0.965 0.002 48.076 20.288 61.500 13.453 11.593 
Ours 0.835 0.010 126.626 19.688 18.466 46.430 15.843 

Table 3. Classification comparison with extra data from different methods. We add FID metric 
to show roughly positive correlation between image quality and accuracy improvement. 

Method ACC↑ AUC↑ FID↓ 
Baseline 78.74  91.69  ∕ 
ILVR 77.93  92.90  26.522 
DDIM 82.83  93.65 18.177 

Ours (w = 1) 76.57  92.86  19.739 
Ours (w = 3) 84.47  93.83  17.052 
Ours (w = 5) 85.83  93.87 13.504 
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5 Results and Discussions 

Controllable Generations. As can be seen from Fig 2, we observe that with the in-
crease of classifier-free guidance scale 𝑤, the class label difference becomes larger and 
the image similarity becomes smaller, so the trade-off between large class label differ-
ence and large image similarity can be controlled by the guidance scale. This manually 
controlled generation can 1) enable interpretable diagnosis by medical experts, espe-
cially for progressive diseases like AD, 2) occur at inference time without additional 
training or fine-tuning, and 3) produce realistic images that retain disease-irrelevant 
individual features and modify disease-related features. 

Comparison of Generated Results. From Fig. 3, we can observe that ILVR [3]  gen-
erates unrealistic images for blur in the coronal view. We can also observe that DDIM 
inversion [15] specializes in altering texture, such as differentiating between white and 
gray matter, but falls short in adjusting structural features like ventricle size. From the 
results in Table 2, we can see that our method achieves the best trade-off of class label 
dissimilarity, image similarity and image realism. Other methods perform badly on at 
least one metrics. For ILVR [3], image similarity of the generated AD is very poor as 
FID of rAD2gAD is way too large. For DDIM inversion [15], the generated CN are 
closer to AD than CN, as FID of rCN2gCN is larger than that of rAD2gCN. 

Data Augmentation Performance. Table 3 shows the classification performance with 
extra data generated by different generation methods. We observe an increase in accu-
racy when implementing our method comparing with other method. For ablation study, 
we note that improper selection of hyperparameters decreases the classification accu-
racy. We also notice that the classification accuracy of different methods and their gen-
eration quality are roughly positively correlated.  

Overall Evaluation. We evaluate our generated images qualitatively and quantitatively 
for visual explanations and evaluate our method on downstream data augmentation 
task. We observe qualitatively, from Figure 3, a large difference between generated AD 
and original CN, containing 1) structural changes in small but important regions like 
the atrophy of the hippocampus, 2) structural changes in large regions like the enlarge-
ment of the ventricles and 3) texture transformation between gray matter and white 
matter. Such findings match the medical prior knowledge. As a contrast, DDIM inver-
sion fails in generating structural changes and ILVR fails in getting the trade-off be-
tween realism and class difference. We also observe quantitatively from Table 2, our 
model achieves best trade-off among image realism, image similarity and class differ-
ence. Data augmentation can support the conclusion as a downstream task in Table 3. 

6 Conclusions 

In this paper, we use conditional diffusion models for counterfactual reasoning when 
given hypothetical class label. Our counterfactual generation quality outperforms state-
of-the-art works in reaching the flexible trade-off between image similarity, class dif-
ference and image realism. We only modify the inference formula instead of tuning the 
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regularization weights. Our saliency maps can be tuned in inference time to explain 
classifier prediction in progressive way instead of training time. This provides medical 
experts with new tools for interpretable disease diagnosis, especially for early diagnosis 
of progressive diseases like AD. We demonstrate the high quality of our generated im-
ages through a downstream data augmentation task. 
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