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Abstract. A single-pixel camera is a spatial-multiplexing device that
reconstructs an image from a sequence of projections of the scene onto
some patterns. This architecture is used, for example, to assist neuro-
surgery with hyperspectral imaging. However, capturing dynamic scenes
is very challenging: as the different projections measure different frames
of the scene, standard reconstruction approaches suffer from strong mo-
tion artifacts. This paper presents a general framework to reconstruct a
moving scene with two main contributions. First, we extend the field of
view of the camera beyond that defined by the spatial light modulator,
which dramatically reduces the model mismatch. Second, we propose to
build the dynamic system matrix without warping the patterns, effec-
tively dismissing discretization errors. Numerical experiments show that
both our contributions are necessary for an artifact-free reconstruction.
The influence of a reduced measured set, robustness to noise and to mo-
tion errors were also evaluated.

Keywords: Single-pixel camera · Motion compensation · Image recon-
struction.

1 Introduction

Single-pixel imaging (SPI) uses a single detector to measure the inner product
between the scene and some user-defined light patterns [4]. This makes it possi-
ble to use detectors incompatible with matrix sensors, such as a spectrometer for
fast hyperspectral imaging [1]. Such images can be used for a wide range of medi-
cal applications including cancers detection, cardiac disease, ischemic tissue, skin
burn, kidney disease, etc [10]. In particular, it has been shown that hyperspec-
tral imaging improves the identification of tumor margins in fluorescence-guided
neurosurgery for the resection of gliomas [3].

The acquisition process leads to an inverse problem that can be solved with
traditional optimization techniques [5, 6] or with machine learning approaches
⋆ Corresponding author: michael.sdika@creatis.insa-lyon.fr
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[13, 12, 14]. Because the measurements are acquired sequentially, SPI assumes the
scene to remain static, otherwise resulting in important motion artifacts. Using
a smaller measurement set helps the reconstruction by compromising between
motion and compression artifacts. Even so, there are two fundamental steps to
consider to achieve dynamic SPI completely free from motion artifacts: i) motion
estimation and ii) reconstruction with a known motion.

In [16, 2], the motion is estimated on a low-resolution video reconstructed
from few measurements. However, this only allows a rough estimation of the
motion which may fail to capture complex motion models. Recently, a two-
armed device combining a single-pixel camera and a conventional camera with
high spatial resolution was proposed to address this problem [11].

There are two main ways to tackle the image reconstruction once the mo-
tion is known. The first aims at minimizing the optical-flow between subsequent
frames along with the residual of the forward model, and eventually an appropri-
ate a priori about the image [16, 19]. The second relies on motion compensation
to build a new linear operator for the dynamic forward model [15, 17, 8]. In SPI,
this has been used in very specific situations. For instance, [9] presents a discrete
version of motion compensation that only works for rigid motions, [9, 11] limit
their study to scenes where no new objects appear in the single-pixel camera
(SPC) field of view (FOV) during the acquisition. Besides, in all these works,
the problem is discretized by warping the light patterns to compensate the mo-
tion. However, warping the fine scale light pattern as in [11, 7] might lead to
high discrepancy between the continuous and the discretized problem, even un-
der small deformation. Previous works used TV regularization to attenuate these
artifacts at the expense of losing image details. In practice, these assumptions
are unrealistic in brain surgery where the object is pulsating in and out of the
SPC’s FOV and where good image quality is needed to help the surgeon identify
tumorous regions. Applying the method proposed in [11] to such cases results in
important artifacts.

In this work, we tackle these limitations with a new setting where we solve
the dynamic problem on an extended FOV and build the dynamic forward model
without warping the light patterns. We will show that only using both contribu-
tions allows an artifact-free reconstruction of the scene. The paper is organized
as follows. Section 2 presents the necessary background on single-pixel imaging.
Section 3 presents our two main contributions: a new method for dynamic single-
pixel imaging on an extended FOV and a new discretization for the dynamic
forward model that removes artifacts. Numerical experiments are presented and
discussed in section 4.

2 Single-pixel imaging

2.1 Forward model

Static acquisition A single-pixel acquisition measures a sequence of inner
products between the scene and some light patterns. When a static scene f(x)
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is considered, the kth measurement can be written as:

mk =

∫
X

hk(x)f(x) dx, (1)

where hk is the kth pattern and X is the SPC’s FOV (which matches the support
of hk). This leads to the resolution of an inverse problem m = Hf where
m = [m1, . . . ,mK ]⊤ ∈ RK is the measurement vector, f ∈ RN is the discrete
image of the scene with N pixels, and H ∈ RK×N is the measurement matrix
containing all the patterns.

Dynamic acquisition For dynamic scenes f(t,x), the kth measurement is
modeled in a similar fashion by:

mk =

∫
X

hk(x)fk(x) dx, (2)

where fk = f(tk, ·) represents the kth frame of the scene. As K frames cannot
be estimated from only K scalar measurements, [11] assumes that the scene can
be motion compensated, i.e.,

fk ◦ vk = fref , (3)

where vk is the deformation occurring between times tk and tref and fref is the
reference motion-compensated image. Then, assuming that fref is supported in
X, the forward problem can be written m = Hdynf ref where Hdyn ∈ RK×N is
the dynamic matrix and f ref ∈ RN is the discrete reference image.

2.2 Image reconstruction

In the presence of noise and/or when considering an accelerated acquisition
with a reduced number of measurements (i.e., K < N), the image can be recon-
structed by optimization of a hand-crafted objective

min
f

1

2
∥Af −m∥22 + ηR(f), (4)

where A is the system matrix (i.e., H for static acquisitions and Hdyn for
dynamic acquisitions), η is the regularization parameter and R is a regularization
functional. The system matrix H is often chosen in bases such as Hadamard or
Fourier and is therefore often well-conditioned. However, the dynamic matrix
Hdyn turns out to be ill-conditioned and, therefore, the dynamic reconstruction
problem requires regularization even in the case K = N .

3 Method

3.1 Dynamic forward model with extended FOV

The method introduced in [11] assumes that either the reference image is null
outside the SPC’s FOV or that the motion does not modify the scene on the
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FOV’s borders. Neither of these assumptions are realistic for practical applica-
tions such as fluorescence guided neurosurgery: the brain is a continuous object
also defined outside the SPC’s FOV and subject to a motion (mainly due to
cardiac pulsations). This motion implies that information goes in and out of the
SPC’s FOV and induce a bias in the model.

To cope with this problem, we start by plugging (3) into (2):

mk =

∫
X

hk(x)fref(v
−1
k (x)) dx =

∫
Zk

hk(vk(z))fref(z) |Jk(z)| dz

=

∫
Zk

hdyn
k (z)fref(z) dz,

where hdyn
k (z) := |Jk(z)|hk(vk(z)) is the dynamic pattern, Jk is the Jacobian

of vk, and Zk := v−1
k (X) is the support of the dynamic pattern hdyn

k . Then,
contrary to [11] that integrates over X, we introduce an extended reconstruction
domain Xext that includes all the Zk and obtain:

mk =

∫
Xext

hdyn
k (x)fref(x) dx ̸=

∫
X

hdyn
k (x)fref(x) dx. (5)

Discretization of (5) on a regular grid of L pixels that covers Xext leads
to the dynamic forward model m = Hv

dynf ref , where Hv
dyn ∈ RK×L is the

dynamic system matrix on the extended FOV, f ref ∈ RL and m ∈ RK . Note
that Equation (5) can be seen as an acquisition in a virtual space where the scene
is static and the patterns are warped (Fig. 2e), in opposition to the physical
acquisition where the scene is warped and the patterns are static (Fig. 2a).

3.2 Dynamic system matrix without warping the patterns

Although equations (2) and (5) are equivalent, warping of the light patterns
in the latter in a discrete setting may raise numerical issues. For example, a
compression warp of highly oscillating binary patterns will result in smooth
blurry patterns, leading to a strong discrepancy between the continuous and the
discrete models. To avoid warping the patterns, we discretize (2) in the physical
space. We search the reference frame on the extended FOV in a certain basis of
functions (e.g. B-splines):

fref(x) =
∑

j∈Iext

f j
refβ(x− xj), (6)

where the f j
ref ’s are the discrete reference frame coefficients, β is the basis func-

tion and Iext are the indexes necessary to cover Xext. Then, the kth acquisition
from (2) can be written as:

mk =

∫
X

hk(x)fref(uk(x)) dx =
∑

j∈Iext

f j
ref

∫
X

hk(x)β(uk(x)− xj) dx. (7)
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where uk = v−1
k . After discretizing the integral, this equation becomes:

mk =
∑

j∈Iext

f j
ref

∑
i∈I

hk(xi)u
k
i,j , (8)

where uk
i,j = β(uk(xi)−xj) and I is the portion of Iext that covers X. As (8) is

linear in fref , it can be written as m = Hp
dynf ref , where Hp

dyn is the dynamic
system matrix in the physical space. Note that uk

i,j can be nonzero for j outside I,
which justifies the need of an extended FOV for the reconstruction. In practice,
the support of the B-splines being quite small, the majority of (uk

i,j)i,j coefficients
are null which makes the computation of (8) efficient.

4 Results

Experimental settings For this study, we consider a 90 × 90 image of a brain
surface subject to the deformation:

uk(x) = c+

(
s(tk) 0
0 s(tk)

−1

)
(x− c), (9)

where s(t) = 1 + a sin( 2πtT ), a = 0.2 is the motion amplitude, T = 1000 ms the
motion period and c is the coordinate of the center of the image. We consider
the motion known at each frame. The SPC’s FOV covers an area of 64 × 64
pixels in the center of the image. We acquire 642 measurements according to the
forward model (2) with Hadamard patterns during 2 periods of the motion. We
consider the three regularizers L2 (R = 1

2∥ · ∥22), H1 (R = 1
2∥∇ · ∥22) and H2

(R = 1
2∥∇

2 · ∥22), for which the variational problem have a closed-form solution.
We compare it to the TV (R = ∥∇ · ∥1) regularizer employed in [11]. As the
objective in this work is to validate the system matrix itself, it is important
not to use learning-based regularizers that might possibly compensate potential
artifacts.

First, we validate our method by reconstructing the reference (8100 pixels)
from noiseless measurements with all 4096 measurements. Then, we conduct
experiments to certify the robustness of the model when the measurement vector
is incomplete, when it is corrupted by noise or when the motion is estimated.

Visualizing the discretization biases The map in Fig. 1a is the percentage of
measurements that contributes to the reconstruction of each pixel. During an
acquisition, the measurement vector m incorporates information from all non-
black pixels. If Hdyn is built using pixels in X only (instead of Xext), the re-
construction sends the information from the pixels outside X to pixels inside X,
creating some artifacts. The three right images presented on the right of Fig. 1
are the models’ biases, measured as log |Hdynf ref −m|. One can observe an im-
portant bias when discretizing the patterns in the virtual space (Fig. 1b). When
discretizing in the physical space but reconstructing in X only (Fig. 1c), the bias
is even more important. In contrast, the model resulting from the combination of
the reconstruction in Xext with our physical discretization leads to a consistent
representation of the reality, with little to no bias in the forward model (Fig. 1d).
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Fig. 1. (a) Contribution map of the measurements with the SPC’s FOV in blue. Resid-
ual map in logarithmic scale from: (b) the virtual discretization from (5) in Xext, (c)
the physical discretization (8) in X, (d) the physical discretization (8) in Xext.

Ablation study For the ground truth image displayed in Fig. 2i, we showcase the
effect of each of our two contributions in the top right of Fig. 2 with L2 regular-
ization on the first line and H1 in the second line. The first column reconstructs
the image on an extended FOV as in Section 3.1 with just enough regularization
(η = 10−10) to cope with the ill-posed nature of the problem. One can see the
artifacts originating from the virtual discretization of (5). The second column
uses our physical discretization (8) on X only. As a consequence of the important
bias observed in Fig. 1c, we had to choose an important regularization param-
eter (η = 103) to perform the reconstruction. The last column demonstrates
the effectiveness of the combination of both our contributions with almost no
regularization (η = 10−10). If the conclusions are similar for both regulariza-
tion, one can clearly see that H1 leads to a far better reconstruction, almost
indistinguishable from the ground truth within the SPC’s FOV.

Comparison to state of the art The results from the state of the art are presented
in the bottom right of Fig. 2. The static forward model (Eq. (4) with H) results
in important artifacts, as shown in Fig. 2j. The dynamic model presented in [11]
(Eq. (4) using Hdyn and η = 102 for TV regularization) reconstructs an over-
smoothed image with visible Gibbs artifacts in the corners that increase over
the iterations, reduced by adopting a truncation strategy (Fig. 2k). Using a L2

a priori in Fig. 2l improves this aspect, but important regularization (η = 103)
is still mandatory even with noiseless measurements, demonstrating that the
problem is not correctly modeled. In any cases, it is clear that our proposed
method (Fig. 2h) outperforms any of the state of the art reconstructions.

Using a reduced set of measurements An advantage of the SPC is its ease of re-
construction from few measurements. We evaluate the robustness of the proposed
approach on reduced sets of measurements using the peak signal-to-noise ratio
(PSNR) of the reconstruction within the SPC’s FOV. Results with structural
similarity lead to similar conclusions (see supplementary material). In Fig. 3a,
the PSNR was computed for a motion known exactly. Except for the method
from the state of the art that heavily relies on regularization (η = 103), we set
η to 10−10 because having more a priori for noiseless measurements was not
particularly helpful. Overall, we remark that our contributions outperforms the



Dynamic single-pixel imaging 7

(a) ph
ys

ic
al

sp
ac

e
O

ur
s

:L
2

(b) (c) (d)

(e) vi
rt

ua
ls

pa
ce

O
ur

s
:H

1

(f) (g) (h)
Xext/Virtual X/Physical Xext/Physical

Static: (4) with H [11] (4) with Hdyn & L2

(i) G
ro

un
d

tr
ut

h
SO

T
A

(j) (k) (l)

Fig. 2. Top left: The extended FOV in the physical and virtual spaces. X, Xext and
Zk are respectively represented in blue, green and red. Bottom left: The ground
truth. Top right: Reconstruction with our method: in line, the regularization L2

or H1. In column, with X or Xext in the physical or virtual space. Bottom right:
Reconstructions from the state of the art. From left to right: Static reconstruction
from (4) with H, Reconstruction from [11], Reconstruction L2 from (4) with Hdyn.

state of the art method. For a fixed number of measurement, H1 and H2 regu-
larizers returns the highest scores. We observe a steady decrease of PSNRs as we
reconstruct from fewer measurements. For L2, the two metrics are considerably
lower than for H1 and H2 and also gradually decreasing.

Robustness to noise We consider measurements corrupted by a Poisson noise
m ∼ 1

αP(αHp
dynf ref), with α a parameter representative of the number of

photons that actually hits the detector. For each noise level, we empirically
select a suitable regularization parameter on a single sample so as to maximize
the reconstructions’ PSNR. We then conduct the simulations on 20 different
samples to obtain results independent of the distribution for a fixed α. We present
results with a perfectly known motion in Fig. 3c. We observe a slight gradual
decrease of both scores as the noise level increase, demonstrating the robustness
of our method to noise. The best results are obtained with H2 regularization,
closely followed by H1. Even though L2 performances are lower, they are still
considerably better than those obtained using the state of the art approach.
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(a) (b) (c) (d)

Fig. 3. Robustness of the proposed method. (a-b) PSNRs as a function of the number
of measurement with known (Fig. 3a) and estimated motion (Fig. 3b). (c-d) PSNRs as
a function of the noise level with known (Fig. 3c) and estimated motion (Fig. 3d). The
shaded area represent the 95% confidence interval around the mean.

Robustness to motion errors We estimated the motion in X from a grayscale
video of the scene at the SPC’s FOV resolution with a motion estimation method
[18]. We used constant extrapolation to get a rough idea of the motion in Xext.
After adjusting the regularization parameters, we confronted our method to
reduced measurement sets and to Poisson noise in Fig. 3b and Fig. 3d. Despite a
slight inevitable decrease in scores, we observed the same trends as in Fig. 3a and
Fig. 3c, where H1 and H2 are the best regularizers. Both Fig. 3b and Fig. 3d show
that even with a rough idea of the motion, our proposed method ensures reliable
reconstructions of dynamic scenes. In practice, using a high-spatial resolution
camera to estimate the motion of the scene [11] directly in the extended FOV
Xext will enable achieving results closer to Fig. 3a and Fig. 3c.

5 Conclusion

We proposed a new framework to reconstruct dynamic scenes for SPI includ-
ing two important contributions. In particular, we demonstrated with numeri-
cal experiments that reconstructing on an extended FOV and using a physical
discretization of the dynamic forward operator was the only way to correctly
model the acquisition. This work will be implemented in an open-access python
library4. Now that the problem modelisation is consistent with the reality and
that reconstruction with classical regularizers is artifact-free, a promising lead
for future works would be to consider deep learning-based regularizers (e.g. with
diffusion models). Another interesting study would be to validate the feasibility
of the method on hyperspectral data.
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