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Abstract. Regression on medical image sequences can capture temporal image
pattern changes and predict images at missing or future time points. However, ex-
isting geodesic regression methods limit their regression performance by a strong
underlying assumption of linear dynamics, while diffusion-based methods have
high computational costs and lack constraints to preserve image topology. In this
paper, we propose an optimization-based new framework called NODER, which
leverages neural ordinary differential equations to capture complex underlying
dynamics and reduces its high computational cost of handling high-dimensional
image volumes by introducing the latent space. We compare our NODER with
two recent regression methods, and the experimental results on ADNI and ACDC
datasets demonstrate that our method achieves the state-of-the-art performance in
3D image regression. Our model needs only a couple of images in a sequence for
prediction, which is practical, especially for clinical situations where extremely
limited image time series are available for analysis. Our source code is available
at https://github.com/ZedKing12138/NODER-pytorch.
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Image prediction and generation

1 Introduction

In medical image analysis, image sequences like longitudinal image scans or image
time series provide rich spatio-temporal information for studying the mechanisms of
human aging and the patterns of disease development. Regression on temporal image
sequences [15,12,9,10] is a commonly-used technique to explore the relationship be-
tween images and their associated time attribute. However, in practice, regression on
medical image sequences, especially longitudinal 3D image volumes, is facing the fol-
lowing three challenges: (i) Missing data. Collecting regular follow-up scans of a sub-
ject is a challenging task. Often, we have missing scans at one or more time points
for each subject. (ii) High-dimension low-sample size data. In this paper, we tackle 3D
medical image sequences, and each volume is high-resolution three-dimensional im-
ages with millions of voxels, while each sequence has only tens of image scans for
regression. (iii) Semantic richness but with subtle temporal changes. Each volume has
detailed spatial information about tissue structures, which is non-trivial to generate; at
the same time, the temporal changes of these tissues are often subtle, which is difficult
to capture without a special design or treatment to model the temporal dynamics.

https://github.com/ZedKing12138/NODER-pytorch
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To address the above challenges, there are two categories of regression approaches,
i.e., the optimization-based methods like geodesic regression [15,9,11] and the learning-
based methods like regression based on diffusion models [21,16]. Geodesic regression
extends linear regression to Riemannian manifolds, which is developed in the frame-
work of Large Deformation Diffeomorphic Metric Mapping (LDDMM)[2]. By gen-
eralizing diffeomorphic image registration to temporal image data, the regression can
compactly model the spatial deformations over time [2,15]. However, solving the un-
derlying optimization problem is computationally expensive. Therefore, a simplified
approximation method, i.e., Simple Geodesic Regression (SGR) [11], has been pro-
posed, which decouples the iterative optimization of regressing geodesics into pairwise
image registrations. To further reduce the computational time with the help of deep
learning techniques, the Fast Predictive Simple Geodesic Regression (FPSGR) [9] is
proposed by utilizing a fast predictive registration method. Although this method is
computationally efficient, its regression accuracy is limited by its assumption of linear
temporal changes.

The diffusion-based model is a recent popular alternative to generate high-quality
images. One recent image regression method is the Sequentially Aware Diffusion Model
(SADM) [21], which augments diffusion models with a sequence-aware transformer
as a conditional module. Like geodesic regression, diffusion-based methods can also
handle the missing data issue and allow for autoregressive image sequence generation
during inference. However, diffusion-based methods likely introduce unwanted struc-
tures into the generated images since they are learning-based techniques and have no
constraints like diffeomorphic deformations in geodesic regression to ensure the topo-
logical preservation and differential homeomorphism properties of the generated im-
ages. Other limitations are the requirements of massive data, a long training process,
extensive memory usage, and high time consumption during inference.

In addition to the previously mentioned regression methods, several time series
modeling approaches utilize spatio-temporal transformers combined with attention mech-
anisms [1,13]. However, these methods are associated with substantial computational
overhead and lack the ability to directly constrain diffeomorphism, making them more
suitable for simpler tasks like human action recognition rather than for reconstruct-
ing high-resolution 3D medical images. Alternatively, Generative Adversarial Network
(GAN) based methods with attribute embedding [20] convert the generation of medical
image time series into a multivariable autoregressive problem. Despite this, GAN meth-
ods often face convergence challenges during training, and the constraints imposed by
reconstruction loss terms to maintain subject identity are limited.

Therefore, we stick to the optimization-based methods like geodesic regression by
using diffeomorphic deformations to drive the image generation over time, but relax its
linear dynamic assumption to model more complex dynamics. Fortunately, the neural
ordinary differential equations (Neural ODEs) [6] provide a neural network based solu-
tion for addressing numerous dynamic fitting problems, which is successfully adopted
to model deformable image registration, such as NODEO proposed in [19]. Inspired
by NODEO, we generalize the Neural ODEs to the image space and handle image re-
gression on a couple of images in a sequence via neural network based optimization.
In particular, we propose a model called NODER, which converts the velocity field op-
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Fig. 1. Overview of our proposed NODER framework.

timization problem in image regression into a parameterized neural network optimiza-
tion problem, as shown in Fig. 1. To address the high-computational cost issue faced
by Neural ODEs when handling high-dimensional image volumes, we propose to bring
the dynamic optimization of Neural ODEs into the latent space via the auto-encoder
technique [18]. Our contributions in this paper are summarized below:

– We propose a novel optimization-based image regression model, NODER, based
on Neural ODEs and diffemorphic registration. Our NODER has the freedom to
capture complex temporal dynamics in 3D medical image sequence with a couple
of images and even missing time points.

– We conduct experiments on both 3D brain and cardiac MRI datasets. Our NODER
generates 3D images with the best quality, compared to recent methods FPSGR and
SADM; and it outperforms the diffusion model SADM in terms of the both image
quality and the computational cost.

2 Method

2.1 Background and Definitions

We consider an unparameterized 3D image as a discrete solid, where the position of
its i-th voxel can be represented as: xi ∈ Ω ⊆ R3, where Ω represents the 3D image
domain. The positions of all voxels in the image can be represented by an ordered set:
q = {xi}Ni=1. Here, N = D × H ×W represents the total number of voxels in the
image, andD,H ,W denote the depth, height, and width of the image, respectively. We
denote the domain where the voxel cloud resides as Π , then we have q ∈ Π .

Now we denote an image sequence as: {(Ik, tk)}L−1
k=0 , where L represents the length

of the image sequence, Ik represents the k-th, and tk is its associate time like age. The
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deformation occurring within an image over time is essentially a mapping from the
original spatial positions at a starting point to the new spatial positions at the next time
point, which can be represented as: ψ : Ω → Ω. On this basis, the identity mapping
Id = ψ0 can be defined as: ψ0(x) = x, for all x ∈ q. In many applications, we desire
the deformation field ψ to possess the properties of smoothness and diffeomorphism.

The objective function of the deformable image registration is defined as:

J (ψ; Im, If ) = S(Im(ψ(q0)), If ) +R(ψ), (1)

where q0 represents the initial voxel cloud without any deformation. The term S(·, ·)
denotes a similarity metric, used to measure the similarity between the moving image
Im deformed by ψ and the fixed image If . The term R(·, ·) represents the regularization
constraint applied to the deformation field. By generalizing image registration to the
temporal regression, the objective function is updated as:

J (ψ; {(Ik, tk)}L−1
k=0 ) =

L−1∑
k=1

(S(I0(ψk(q0)), Ik) +R(ψk)). (2)

In this way, we regress the image sequence and generate an image trajectory, where the
generated images are as close as possible to the corresponding images in the original
sequence, while imposing the smoothness constraints on the deformation fields.

2.2 Formulation of Image Regression in Neural ODEs

From a system perspective, neural ODEs represent vector fields as a continuous-time
model of neural networks. It has been widely used as a general framework for modeling
high-dimensional spatio-temporal chaotic systems using convolutional layers, demon-
strating its ability to capture highly complex behaviors in space and time. Therefore,
we consider the trajectory of the entire voxel cloud as the solution of the following
first-order ordinary differential equation (ODE):

dq

dt
= vθ(q(t), t), s.t. q(0) = q0 = Id, (3)

where vθ(·) is a parameterized network that describes the dynamics of voxel cloud
deformation, q0 represents the initial state of the voxel cloud at t = 0, which corre-
sponds to an identity map. The varying velocity field over time indicates non-stationary
dynamics, which is fundamentally different from SGR with stationary dynamics.

The trajectory of q is generated by integrating the above ODE under the initial
condition q0. Assuming the voxel cloud evolves from t = 0 to t = tk(k = 1, 2, ..., L−
1), the voxel cloud obtained at t = tk is given by the following equation:

ψk(q0) = q(tk) = q0 +

∫ tk

0

vθ(q(t), t)dt. (4)

In particular, the computation of this flow field map is performed using numerical inte-
gration methods such as the Euler method [4]. The time t can be parameterized by the
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total number of steps and the corresponding step size adopted by the solver. Therefore,
the task of finding the transformation ψ becomes the search for the optimal parameter
set θ that describes v. The optimization problem becomes:

θ = argmin
θ∈Θ

L−1∑
k=1

(
S
(
I0(q0 +

∫ tk

0

vθ(q(t), t)dt), Ik

)
+R(ψk,vθ)

)
, (5)

where Θ represents the entire parameter space. Since Neural ODEs typically require
numerical solvers and take many steps to approximate flows, they will incur significant
memory overhead if all gradients along the integration steps need to be stored during
backpropagation. Hence, the Adjoint Sensitivity Method (ASM) [6,17] has been im-
plemented for optimizing Neural ODEs with constant memory gradient propagation,
allowing our framework to interpolate any number of time steps between t = 0 and
t = s with a constant memory overhead.
Latent Space. Due to the complexity of high-dimensional data, solving Neural ODEs
directly in the original space incurs significant computational costs. Therefore, we bring
the above image regression formulation into a latent space, using a pair of pre-trained
encoder-decoder networks to reduce the dimension of deformations, as shown in Fig. 1.
We apply diffeomorphic VoxelMorph [7,8] on a large 3D MRI dataset to estimate the
deformations between image pairs and use these estimated deformations to guide the
pre-training of the auto-decoder. At the training stage of our regression model, we fine-
tune the decoder. Overall, the final framework of our NODER can be represented as:

dy

dt
= uθ(y(t), t), s.t. y(0) = Encoder(q0), y(tk) = y0 +

∫ tk

0

uθ(y(t), t)dt.,

q(tk) = K(Decoder(y(tk))),
(6)

where Encoder(·) and Decoder(·) represent the encoder and decoder, respectively, fol-
lowing the design in [18]. K denotes a smoothing kernel used to smooth the deformation
fields obtained after decoding. uθ is a parameterized network like vθ but in the latent
space, which is used to estimate dynamics. In the dynamic network uθ, we extract
features from the latent space through continuous convolutional downsampling. These
features are then flattened into one-dimensional vectors and added to the input time
embedding, achieving fusion between the latent space features and time. Finally, we re-
construct the output of the fully connected layers, restoring the one-dimensional vector
to the shape of the compressed three-dimensional deformation field. The overview of
our model is presented in Fig. 1.
Loss Functions. We choose the normalized cross-correlation (NCC) as the loss function
for the similarity term S. The regularization term R consists of two parts:

R(ψ) = λ1Lsmt+λ2Lbdr = λ1
1

N

∑
x∈q(s)

(∥∇ψ(x)∥22)+λ2
1

Nbdr

∑
d∈D

∑
b∈B

∥ψd,b(x)∥22,

(7)
where the first term Lsmt constrains the smoothness of the spatial gradients within the
deformed voxel cloud, and the second term Lbdr represents the L2-norm constraint on
the boundary of the deformation field. Here, N , Nbdr, D = (d1, d2, d3), and B =
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Fig. 2. Visualization of the regression results on the ADNI dataset. Top to bottom rows: 1) image
sequence of a subject, 2) our prediction, 3) image difference of original sequence w.r.t. the first
baseline image, and 4) image difference between generated and original corresponding images.

(top, bottom, front, behind, left, right) represent the total voxel number, the voxel
number of six boundary planes,the three dimensions, and the six boundary planes of
the deformation field, respectively.

3 Experiments

We conducted experiments on two medical datasets, including a 3D MRI brain im-
age dataset ADNI (Alzheimer’s Disease Neuroimaging Initiative) [14] and the cardiac
dataset ACDC [3]. We compare our method with two advanced medical image regres-
sion baselines, FPSGR [9] and SADM [21]. Finally, we perform ablation experiments
to demonstrate the effects of a series of smoothness constraints within the network.
Datasets. (1) ADNI [14]. The ADNI dataset consists of 3D brain MRI images collected
from 2,334 subjects. Each subject has an image sequence of 1 to 16 time points, re-
sulting in 10,387 MRI images. All images went through preprocessing steps including
denoising, bias field correction, skull stripping, and affine registration to the SRI24 at-
las. All brain images are standardized to a size of 144 × 176 × 144 with a spacing of
1mm× 1mm× 1mm and applied histogram equalization. The intensity of each image
volume is normalized within [0, 1]. We select 1,568 subjects that have more than two
image scans as our dataset for experiments. For each subject, we randomly select 20%
time points for the test and the remaining images are used for training and validation.
(2) ACDC [3]. The ACDC (Automatic Cardiac Diagnosis Challenge) dataset consists
of cardiac MRI images from 100 training subjects and 50 testing subjects. We follow
SADM [21] and borrow its pre-processed and partitioned ACDC dataset. We take the
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Table 1. Quantitative comparison between baselines and our propose NODER

Dataset Method NRMSE ↓ SSIM ↑ PSNR ↑ %Foldings ↓ Inf. time ↓ Memory ↓

ACDC
FPSGR [9] 0.321 0.674 22.852 5.9e-4 1.58s 5.6GB
SADM [21] 0.287 0.701 24.996 – 5min 38.5GB

NODER (ours) 0.283 0.712 25.547 2.3e-3 15.63s 10.3GB

ADNI
FPSGR [9] 0.184 0.755 26.876 3.2e-4 1.72s 8.2GB

NODER (ours) 0.159 0.842 28.673 1.8e-3 18.53s 15.4GB

Fig. 3. Visualization of the regression results on the ACDC dataset. Top to bottom rows: 1) image
sequence of a subject, 2) our prediction, 3) image difference of original sequence w.r.t. the first
baseline image, and 4) image difference between generated and original corresponding images.

image sequence from the ED (the End-Diastole of the cardiac cycle) to the ES (End-
Systole) and resize it to 12 image frames and each frame has a size of 128× 128× 32.

Evaluation Metrics and Other Settings. To evaluate the quality of the generated im-
ages, we use three metrics, including the Normalized Root Mean Square Error (NRMSE),
the Structural Similarity (SSIM), and the Peak Signal-to-Noise Ratio (PSNR). Also, we
quantify the smoothness of a deformation field by calculating the percentage of its vox-
els with negative Jacobian determinants. Regarding the inference time, we implement
our models and FPSGR on a single RTX 3090 GPU and report their memory cost and
the average time of 5 forward inferences. Since SADM needs more GPU memory, we
implement it on A100-PCIE-40GB GPU and then report its computational cost. For
other inference costs, we load the model on a single RTX 3090 GPU and record the
time and storage required for one forward inference, averaging multiple forward infer-
ences to obtain the average costs.

For the ACDC dataset, we compare our method with both FPSGR and SADM, while
on the ADNI dataset, we have only FPSGR as the baseline, since SADM cannot handle
it even with an A100 GPU. Due to the lack of ground truth and other technique issues,
we replace the registration networks of FPSGR with the diffeomorphic VoxelMorph [8],
which is pre-trained on the ADNI dataset.
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In the specific implementation of NODER, we choose the average smoothing kernel
with a window size of 15 and a sliding stride of 1. The optimizer is Adam, with a
learning rate set to 0.005. The construction of Neural ODE relies on the torchdiffeq
toolkit [5], where the solving method is set to RK4 (fourth-order Runge-Kutta method
with a fixed step size). The relative error tolerance (rtol) is set to 1e-3, and the absolute
error tolerance (atol) is set to 1e-5. The coefficients λ1 and λ2 for the loss functions
Lsmt and Lbdr are set to 0.05 and 0.0001, respectively. For image sequences from a
single subject, we train our model for a total of 300 epochs.

Fig. 4. Visualization of using (2nd row) and not using (3rd row) the smoothness constraints on
regression the image sequence (1st row).

Fig. 5. Visualization of deformation fields
without (left) and with the boundary con-
dition (right).

Experiment Results. Table 1 reports the
quantitative results of our method compared
with FPSGR and SADM. Our NODER out-
performs all methods in terms of the qual-
ity of the generated images. Our method
needs more computational time and memory
than FPSGR to generate images with higher
quality, while both have the inference time
within seconds and a memory cost of around
10GB. While SADM needs way more time
and memory at the inference stage. The visu-
alization of the regression results is shown in
Fig. 2 and Fig. 3. The difference images indi-
cate our method can successfully capture the
temporal dynamics in the brain and cardiac
image sequences.
Ablation Study. To validate the effect of the smoothness constraints in our proposed
method, we conduct an ablation experiment, which is shown in fig. 4. By removing
all smoothness constraints, it can be observed that the quality of the generated image
sequence significantly deteriorates. Voxels move arbitrarily in three-dimensional space,
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leading to severe distortion of the original brain structure and numerous folding phe-
nomena. To verify the effect of the boundary condition Lbdr in R(ψ), we visualize the
deformation field, as shown in Fig. 5. The introduction of boundary conditions leads
to a powerful smoothness constraint in the background region of the deformation field,
where severe deformations originally occurred.

4 Conclusion and Discussion

In this work, we propose the NODER method, leveraging the powerful representation
capability of neural networks to simulate the underlying dynamics of brain or cardiac
deformation trajectories. Through solving ordinary differential equations, we achieve
fitting regression on existing medical image time series, thus enabling the generation
of desired images at any time point. Our method is based on the theoretical basis of
deformable registration and resamples the first image of each subject through the de-
formation field to generate a new image. The loss terms we use in this paper explicitly
impose diffeomorphic constraints, thus maintaining accurate anatomical information
to some extent. Experimental results on large-scale 3D MRI datasets demonstrate that
our method outperforms existing state-of-the-art methods, FPSGR and SADM, by pre-
dicting more accurate image volumes. In future work, we consider incorporating the
learning-based methods to further reduce the inference time cost and make it more
practical. Also, exploring ways to improve the smoothness of the deformation fields is
another direction for our future work.
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