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Abstract. Reinforcement learning (RL)-based tractography is a com-
petitive alternative to machine learning and classical tractography algo-
rithms due to its high anatomical accuracy obtained without the need
for any annotated data. However, the reward functions so far used to
train RL agents do not encapsulate anatomical knowledge which causes
agents to generate spurious false positives tracts. In this paper, we pro-
pose a new RL tractography system, TractOracle, which relies on a re-
ward network trained for streamline classification. This network is used
both as a reward function during training as well as a mean for stopping
the tracking process early and thus reduce the number of false positive
streamlines. This makes our system a unique method that evaluates and
reconstructs WM streamlines at the same time. We report an improve-
ment of true positive ratios by almost 20% and a reduction of 3x of false
positive ratios on one dataset and an increase between 2x and 7x in the
number true positive streamlines on another dataset.
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1 Introduction

Tractography is the process of virtually reconstructing the major white mat-
ter (WM) pathways of the human brain using diffusion magnetic resonance
imaging (dMRI) [1]. Tractography has been successfully used in a number of
applications such as presurgical planning [8], connectomics [28], tractometry [3]
and disease progression modelling [22].

Despite many advances [6, 32, 10, 29], tractography still suffers from unre-
solved issues in the presence of complex fiber configurations [16, 24]. Tractogra-
phy has been described as an ill-posed problem as it tries to infer global structure
only from local information [16]. One common solution to this problem is to re-
construct overcomplete tractograms by seeding aggressively and then use a filter-
ing tool, such as SIFT [27] or COMMIT [5] to remove unnecessary streamlines.
However, this approach suffers from several limitations as it : (1) cannot recover
false negative streamlines (i.e missing connections), (2) necessitates more data
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Fig. 1: (a) TractOracle: an RL system in which the environment sends stream-
lines to TractOracle-Net as they are being tracked to score their anatomical
plausibility. The scores (illustrated as the colours of the streamlines) are used
to reward the agent and stop the tracking process when streamlines diverge into
an implausible shape. TractOracle-RL then uses the reward function to predict
anatomically-informed tractograms. (b) TractOracle-Net scores along valid and
invalid cortico-spinal tracts. Streamlines correctly terminating in the motor cor-
tex get a high plausibility score (red); implausible streamlines diverging towards
the corpus callosum get a low (blue) score.

handling and often (3) do not eliminate false positive streamlines completely as
filtering algorithms are not immune to error [14].

Supervised machine learning approaches have been proposed to tackle this
problem [2, 18, 20, 33] by training on curated sets of streamlines. However, datasets
suitable for learning the tractography procedure are still few [21] and mostly lim-
ited to in-silico phantoms [4, 16].

Reinforcement learning (RL)-based tractography [31, 30] has been proposed
as a way to learn tractography algorithms without reference streamlines. Instead,
a reward function is used to guide the learning procedure to follow the orientation
of local dMRI signal, as would typical tractography do. RL-based tractography
agents tend to exhibit higher accuracy than classical tractography [30]. However,
the proposed reward functions do not encapsulate anatomical priors and are thus
prone to ”reward hacking” issues [31, 25].

Here we propose a new RL tractography method trained to track and filter
streamlines simultaneously. At the core of our system is a transformer network
that predicts streamlines’ anatomical score. This neural net acts as an oracle in
our RL framework to reward streamlines based on the anatomical plausibility of
their shape, guiding agent towards reconstructing streamlines with greater accu-
racy during training. Moreover, computing the plausibility score of a streamline
while it is being tracked allows the system to stop the tracking when it diverges
to an implausible path, preventing their reconstruction. This system is unique
and exhibits state-of-the-art results in both tractogram segmentation and trac-
togram generation, outperforming competitive methods.
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2 Preliminaries and proposed method

Tractography dMRI allows for virtual reconstruction of the WM pathways
through a process called tractography. From an initial 3D point p0 called a seed,
a direction u0 of amplitude ∆ is chosen according to a local model v(p0) (e.g.
a fiber orientation distribution function, fODF [6]) of the diffusion signal at p0.
Taking a step in ∆u0 gives rise to p1, a new position in the WM. The process is
repeated until a stopping criterion is met, i.e. exiting the WM mask. Formally:

pt+1 = pt +∆ut, ut ∼ v(pt). (1)

The resulting ordered set of points P = {p0, ...pT } with T being the length of
the sequence is called a streamline, or tract. An ensemble of streamlines is called
a tractogram. Seed points can be generated throughout the WM mask to ensure
proper coverage of the WM, but the resulting streamlines may overrepresent
major WM pathways [13]. Alternatively, seed points can be generated at the
WM/grey matter (GM) interface, where axons are known to originate.

Reinforcement learning (RL) Tractography can be formulated as an RL
learning problem [31]. In that case, the tractography system involves an agent
π trained to predict tracking steps by interacting with its environment, i.e. 3D
dMRI signal. RL uses the principles of the Markov Decision Process, describing
the environment in terms of S the set of all possible states,A the set of all possible
actions, p(st+1|st, at) the transition probability between two consecutive states
and a reward function r(st, at) (rt in short). An action at ∈ A taken by the
agent at state st ∈ S leads to a new state st+1 ∈ S and a reward rt given by
the environment. By repeating the process of taking actions in states, a series
of states and actions called a trajectory is generated. In tractography, a state st
correspond to the dMRI signal in the vicinity of pt, an action at corresponds to
the translation vector ut between pt and pt+1, and a trajectory amounts to a
WM streamline [31].

The goal of the agent is to optimize its policy π so as to maximize the
expected discounted sum of future rewards, or return in short:

Gt =
∑
k=t..T

[γkr(st+k, at+k)] (2)

where γ is a discount factor that prioritizes immediate rewards over distant ones.
Central to RL policies are the concepts of value function Vπ(st) and Q function
Qπ(st, at). The value function estimates the expected return from a state st and
subsequent trajectories under a policy π:

Vπ(s) = Es∼π [Gt|st = s] . (3)

The Q function Qπ(st, at) evaluates the expected return from taking an ac-
tion at in state st and then following policy π, providing a direct measure for
assessing the immediate and subsequent value of actions:

Qπ(s, a) = Eπ [r(st, at) +Gt+1|st = s, at = a] . (4)
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Previous RL tractography methods [30] are limited by their reward function
r(st, at) which considers only local information from the dMRI signal surround-
ing st. We instead reformulate the reward function to include a factor based on
the anatomical plausibility of the reconstructed streamline from s0 to st. This
score is given by a neural network called TractOracle-Net.

TractOracle-Net TractOracle-Net is a transformer network [7] which takes
streamlines as input and outputs scores related to their anatomical plausibility.
Figure 1 illustrates how TractOracle-Net interacts with the environment to score
streamlines. In the upcoming sections, it is represented as Ωψ where ψ are the
network parameters.

Its input comprises the direction between the coordinates of a streamline
that is resampled to a fixed number of points, to which a ”SCORE” token is
prepended. The transformer network consists of a 32-dimension embedding, po-
sitional encoding, 4 transformer encoder blocs each with 4 attention heads, and
a linear and sigmoid layer to convert the SCORE token to a scalar between 0 and
1, for a total of 550k trainable parameters. TractOracle-Net is trained to perform
regression using the mean-squared error as a loss function. For data augmenta-
tion, streamlines are randomly flipped, randomly cut (and then re-resampled to
128 points) and Gaussian noise is applied point-wise to the streamlines. We use
0.5 as a plausible/implausible classification threshold.

TractOracle-RL For TractOracle, the state st contains the fODFs at position
pt (i.e. the local diffusion orientation v(pt)) to which we append the six sur-
rounding fODFs and the previous 100 tracking directions [30]. The initial states
s0 are selected at the WM/GM interface, and the actions at produced by the
agents are posed as the tracking directions ut, which the environment rescales
to ∆ to propagate streamlines.

The reward function is made of two terms: a local reward which accounts for
how much the streamline segment at state st is aligned with the surrounding
fODFs and its previous segment, and an anatomical score of the reconstructed
streamline predicted by TractOracle-Net. Formally:

rt =
(
|max
v(pt)

⟨v(pt), at⟩| · ⟨at, at−1⟩
)

︸ ︷︷ ︸
local

+α1Ωψ (P0..t)︸ ︷︷ ︸
anatomical

, (5)

with v(pt) the maxima of v(pt) and 1Ωψ is an indicator function of the score
given by TractOracle-Net :

1Ωψ (P0..t) =

{
1 if Ωψ(P0..t) >= 0.5 and t = T

0 else.
(6)

Moreover, we propose a new stopping criterion based on the prediction of
Ωψ: if the score given to a streamline after a number of steps t falls below 0.5,
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the tracking stops. The stopping criteria become:

t = T


if Ωψ(P0..t) < 0.5 and t > Tmin

if 1WM (pt) < 0.1

if (180/π)⟨ut,ut−1⟩ < ϵ,

(7)

where Tmin indicates the minimum number of steps before the criterion can
be enforced, 1WM (pt) is the value found via trilinear interpolation of the WM
mask at position pt and ϵ indicates the maximum angle (in degrees) between
two streamline segments.

Implementation We set α = 10, Tmin = 20 and ϵ = 30. We use the Soft-Actor
Critic [12] RL algorithm to train the agents (c.f supplementary material 1 for an
overview). The actor and twin critics are 3 layers fully-connected neural networks
with a width of 1024. In our case, π outputs the mean and the standard deviation
of a 3D Gaussian distribution which is sampled to obtain at, the tracking step.
We set the learning rate and discount factor to 0.0005 and 0.95, respectively.

3 Experiments and results

3.1 Datasets and tools

ISMRM2015 A synthetic dataset derived from global tractography on one
subject of the Human Connectome Project [16, 17, 11]. We performed tracking
using an ensemble of five algorithms [10, 6, 32], each generating 100k streamlines
from both WM and WM/GM interface seeding. All other parameters were left
to their respective default values. The resulting streamlines were segmented by
the Tractometer [23] to obtain positive and negative examples.

BIL&GIN The Brain Imaging of Lateralization by the Groupe d’Imagerie Neu-
rofonctionnelle (BIL&GIN) dataset is a publicly available dataset of 453 healthy
adults participants. To train TractOracle-Net, we follow the experimental pro-
cedure as described in [15] to obtain the callosal fibres of 39 randomly selected
subjects from the dataset.

TractoInferno Multi-site and multi-protocol dataset totalling 284 subjects. Be-
cause the reference bundles from [21] do not provide negative examples, we repeat
the tracking procedure as presented in [21] to generate data for TractOracle-Net.
We use Recobundles [9] to extract reference bundles and keep the unrecognized
streamlines as negative examples, from which we select at random, per subject,
500k streamlines from recognized and unrecognized fibers respectively.
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Table 1: Classification metrics on the ISMRM2015 dataset. FINTA results are
reported from [15]. Best results per metric are highlighted in bold.

Accuracy (%) Sensitivity Precision F1-score

Recobundles 0.91 0.81 0.97 0.88
FINTA 0.91 0.91 0.91 0.91
TractOracle-Net 0.97 0.98 0.94 0.96

Table 2: Classification metrics (Mean ± stdev) on 8 test subjects of BIL&GIN.
Recobundles and FINTA results are reported from [15]. Best results are high-
lighted in bold.

Accuracy Sensitivity Precision F1-score

Recobundles 0.82 ± 0.03 0.80 ± 0.03 0.67 ± 0.01 0.70 ± 0.02
FINTA 0.91 ± 0.01 0.91 ± 0.01 0.78 ± 0.01 0.83 ± 0.01
TractOracle-Net 0.96 ± 0.01 0.92 ± 0.02 0.76 ± 0.02 0.83 ± 0.02

3.2 TractOracle-Net performance

To ensure that TractOracle-Net can properly guide the learning procedure of RL
agents and validate the chosen architecture, we first need to ensure that it can
classify streamlines based on their shape. We train two instances of TractOracle-
Net on the ISMRM2015 and BIL&GIN datasets (c.f. section 3.1) for 50 and
200 epochs, respectively. We compare ourselves to the FINTA [14] streamline
filtering algorithm and Recobundles [9] clustering algorithm. Recobundles uses
the ground-truth ISMRM2015 bundles as atlas on the dataset.

Tables 1 and 2 report results for this experiment. Recobundles and FINTA
obtain the highest precision on ISMRM2015 and BIL&GIN, respectively, but Re-
coBundles has access to ground truth bundles as opposed to the other methods.
Besides precision, TractOracle outperforms Recobundles and FINTA according
to all other metrics on the ISMRM2015 and BIL&GIN datasets.

3.3 TractOracle in-silico performance

We then investigate the improvements brought by TractOracle-RL over other
tractography methods by training and tracking on the ISMRM2015 dataset. All
agents were trained for 1000 epochs, five times with different random seeds. We
used the TractOracle-Net model trained on the ISMRM2015 dataset from the
previous experiment. We compare the proposed method against some of the most
widely used algorithms: the sd stream and ifod2 algorithms from MRTrix3 [32]
as well as Track-to-Learn [30]. For all methods, we track five times at 20 seeds
per voxels at the WM/GM interface using five different random seeds and report
mean Tractometer metrics.

Table 3 reports Tractometer metrics for all agents considered in this experi-
ment. As shown in red, TractOracle obtains by far the highest Valid Connection
(VC) rate (22% better than the 2nd best method), as well as the lowest Invalid
Connection (IC) (3x lower than the 2nd best) and No-connection (NC) rates
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Table 3: Tractometer scores (mean ± stddev) on ISMRM2015 for TractOracle-
RL (Proposed), Track-to-Learn, and classical tractography algorithms. Scores
in bold indicate the best method for each metric, scores in red indicate the
method is severely outperforming the others.

VC % ↑ VB (/21) ↑ IC % ↓ IB ↓
sd stream 55.96 ± 0.21 19.00 ± 0.00 44.04 ± 0.21 199.80 ± 4.26
ifod2 31.53 ± 0.20 19.00 ± 0.00 68.47 ± 0.20 281.00 ± 4.00
Track-to-Learn 66.13 ± 1.15 20.00 ± 0.63 33.87 ± 1.15 293.40 ± 11.8
TractOracle-RL 88.05 ± 0.35 19.33 ± 0.47 11.95 ± 0.35 195.67 ± 4.99

OL % ↑ OR % ↓ F1 % ↑ NC ↓
sd stream 38.85 ± 0.05 3.59 ± 0.05 52.47 ± 0.03 9.36 ± 0.18
ifod2 48.70 ± 0.11 8.18 ± 0.19 59.10 ± 0.07 12.45 ± 0.08
Track-to-Learn 53.84 ± 2.28 29.94 ± 2.00 57.43 ± 1.84 2.85 ± 0.42
TractOracle-RL 48.43 ± 0.64 17.68 ± 1.00 57.00 ± 0.47 0.73 ± 0.12

(3x lower than the 2nd best). While the proposed method reduces the over-
lap (OL) of recovered bundles compared to Track-to-Learn, it also reduces the
overreach (OR) preserving a similar F1 score, as well as greatly reducing the
number of invalid bundles (IB) reconstructed. Compared to classical tractogra-
phy, the proposed method has a similar number of VB and OL and F1 rates
while having significantly higher VC rates and significantly lower IB numbers,
IC, NC rates, the best scores ever reported on this dataset.

3.4 TractOracle in-vivo performance

After validating the in-silico performance of our agents, we turn to in-vivo sub-
jects. We train TractOracle-Net on the reference streamlines of TractoInferno as
described in section 3.1 for 10 epochs. We report an accuracy of 89.21% on the
TractoInferno test split. We then train TractOracle-RL agents on the TractoIn-
ferno dataset and track on the test set, repeating the experimental procedure
and reusing the same hyperparameters from the previous experiment.

We segment the tractograms using Recobundles to provide a qualitative com-
parison to reference bundles of the test set. We additionally quantitatively eval-
uate the anatomical accuracy of the reconstructed tractograms by classifying
them using Recobundles [9], TractOracle-Net and extractor flow [19], an auto-
mated set of anatomical rules derived from current anatomical knowledge, and
report the number of streamlines that were classified as plausible by the tools.
We do not report results from the TractoInferno pipeline [21] as the pipeline
evaluates the volume of reconstructed bundles, where as our method is focused
on connection accuracy. We argue the pipeline does not report relevant metrics
for the goal of this work.

Figure 2 displays some bundles from subject 1006 of the dataset and as re-
constructed by all methods (additional bundles are available in supplementary
material B). We can observe that the proposed method reconstructs highly visu-
ally appealing bundles, with excellent fanning. Moreover, the proposed method
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Fig. 2: Visualization of the occipital part of the corpus callosum (1st row), the left
cingulum (2nd row), the left-right uncinate fasciculus (3rd row) and the left-right
parieto-occipito pontine tracts (4th row) from subject 1006 of the Tractoinferno
dataset (reference) and as reconstructed by all methods considered in this work.

Table 4: Total number of streamlines recovered by Recobundles [9], extrac-
tor flow [19] and TractOracle-Net for all tracking algorithms considered.

Recobundles ↑ extractor flow ↑ TractOracle-Net ↑
sd stream 2,713,507 7,698,181 28,901,678
ifod2 2,362,290 15,833,504 24,228,612
Track-to-Learn 9,309,681 46,135,363 85,447,863
TractOracle-RL 25,028,287 55,761,074 184,355,412

tends to reconstruct parts of the bundles that even the reference dataset misses,
such as the ”tail” of the cingulum, most of the uncinate fasciculus and some
fanning of the parieto-occipito pontine tracts. sd stream provides generally thin
bundles, whereas ifod2 and Track-to-Learn produce similarly voluminous bun-
dles.

Table 4 underlines that TractOracle produces highly anatomically accurate
tractograms. Despite using the same number of seeding points for all methods,
the number of plausible streamlines reported by TractOracle is drastically higher
than other methods regardless of the classification tool used, going from an
average improvement of 7x for sd stream and ifod2, to 2x for Track-to-Learn.
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4 Discussion and conclusion

In this work, we presented TractOracle, a highly accurate tractography system
which evaluates and generates streamlines at the same time. From the results
above, TractOracle-Net outperforms state-of-the-art streamline classification al-
gorithms (c.f. tables 1, 2) while TractOracle-RL produces highly accurate (c.f.
tables 3, 4) and voluminous (c.f. figure 2) tractograms. As of today, TractOracle
is the most effective machine learning WM tracking method.

Future work should aim at improving the overlap between the reconstructed
tractograms and reference bundles (c.f. table 3). Future work could also in-
clude further anatomical information via the use of Anatomically-Constrained
Tractography [26]. Limitations and failure modes, including in the presence of
pathology, need to be explored. But most importantly, future work should aim at
giving the tracking agent global context of the diffusion volume to finally tackle
the ill-posedness of tractography.
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