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Abstract. Interpretability is essential in medical imaging to ensure that
clinicians can comprehend and trust artificial intelligence models. Sev-
eral approaches have been recently considered to encode attributes in
the latent space to enhance its interpretability. Notably, attribute reg-
ularization aims to encode a set of attributes along the dimensions of
a latent representation. However, this approach is based on Variational
AutoEncoder and suffers from blurry reconstruction. In this paper, we
propose an Attributed-regularized Soft Introspective Variational Autoen-
coder that combines attribute regularization of the latent space within
the framework of an adversarially trained variational autoencoder. We
demonstrate on short-axis cardiac Magnetic Resonance images of the
UK Biobank the ability of the proposed method to address blurry recon-
struction issues of variational autoencoder methods while preserving the
latent space interpretability.
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1 Introduction

Interpretability is crucial for transparent AI systems in medical imaging to build
clinician trust and advance AI adoption in clinical workflows. As highlighted
by Rudin [19], it is essential that models are inherently interpretable and not
black-box models to ensure their relevance. Latent representation models like
Variational AutoEncoder (VAE) have emerged as potent models capable of en-
coding crucial hidden variables within the input data [8,2,12]. Especially when
dealing with data that contain different interpretable features (data attributes),
self-supervised [7] or supervised approaches can encode those attributes in the
latent space [13,11,5,14].

In this context, Pati et al. [14] introduced an attribute-regularized method
based on VAEs that aims to regularize each attribute, added as extra input,
along a dimension of the latent space and, therefore, ensure the latent space
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Fig. 1: AR-SIVAE: Attribute Regularized Soft Introspective Variational Au-
toEncoder (AR-SIVAE) combines attribute regularization within the SIVAE
framework (an adversarially trained encoder-decoder network) to enhance the
interpretability of the latent space while being able to generate non-blurry sam-
ples.

interpretability. Notably, Cetin et al. [3] applied this architecture for cardiac
attributes on MRI data, demonstrating a significant improvement in the in-
terpretability of the latent representation and its relevance for a downstream
cardiac disease classification task. Nevertheless, VAE-based methods may suf-
fer from blurry reconstruction, which could be problematic for any downstream
task.

The advancement of VAE generation capabilities to overcome this limitation
can be categorised into approaches that focus on enhancing the network’s archi-
tecture [20,21], integrating more robust priors [17,10], introducing regularisation
techniques [6,22] or integrating adversarial objectives [9,4]. The latter has the
benefits of combining the generative capability of GANs and the inference capa-
bility of VAEs, which is needed to add attribute regularisation. Notably, Daniel
et al. [4] introduced a novel approach called Soft Introspective Variational Au-
toEncoder (SIVAE) that incorporates an adversarial loss into VAE training. In
contrast to earlier methods that used additional discriminator networks [16],
SIVAE utilizes the encoder and decoder of VAE in an adversarial manner and
demonstrated good generation quality and strong inference capabilities on sev-
eral vision datasets.

In this paper, we propose the Attributed Regularized Soft Introspective Vari-
ational Autoencoder (AR-SIVAE) by combining an attribute regularization loss
in the SIVAE framework to preserve the interpretability of the latent space while
having better image generation capabilities. To the best of our knowledge, we are
the first to introduce this loss in an adversarially trained VAE. We compare our
method to the one described in Cetin et al. [3] on a healthy population of cardiac
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MRI from the UK Biobank. Our method overcomes the limitations associated
with blurry reconstruction while maintaining latent space interpretability.

2 Methods

2.1 Preliminaries:

Attributed regularized VAE : Attri-VAE, proposed by Pati et al. [14], aims
to encode an attribute a along a dimension k of a D-dimensional latent space
z : zk, k ∈ [0,D), such that the attribute value increases when we traverse the
dimension k. This is achieved by adding a loss to the VAE training objective.
This attribute regularization loss based on an attribute distance matrix Da and
a similar distance matrix Dk computed from the regularized dimension k. They
are defined as follows and computed for each batch of the training data:

Da(i, j) = a(xi)− a(xj); Dk(i, j) = zki − zkj (1)

where xi,xj ∈ RN are two high-dimensional samples of dimension N (with
N >> D). The attribute regularization loss term is then computed for each
attribute k as follows:

Lk,a = MAE(tanh(δDk)− sgn(Da)) (2)

where MAE(.) is the mean absolute error, tanh(.) is the hyperbole tangent
function, sgn(.) is the sign function and δ is a tunable hyperparameter which
decide the spread of the posterior distribution. The sum for each attribute is
then added to the β-VAE loss term and weighted by the hyperparameter γreg:

L = Lr(x) + βLKL(x) + γregLattr with Lattr =

D−1∑
l=0

Lkl,al
(3)

where A : al, l ∈ [0, D) a set of attributes, Lr the reconstruction loss and
LKL the Kullback Leibler divergence controlled by the parameter β.

Soft Introspective Variational Autoencoder (SIVAE) The SIVAE frame-
work proposed by [4] is an adversarially trained VAE. Its encoder is trained to
distinguish between real and generated samples by minimizing the KL diver-
gence between the latent distribution of real samples and the prior while max-
imizing the KL divergence of generated samples. Conversely, the decoder aims
to deceive the encoder by reconstructing real data samples using the standard
Evidence Lower Bound (ELBO) and minimizing the KL divergence of generated
samples embedded by the encoder. The optimization objectives for the encoder,
EΦ, and decoder, Dθ, to be maximized are formulated as follows:

LEϕ
(x, z) = ELBO(x)− 1

α
(exp(αELBO(Dθ(z)), (4)

LDθ
(x, z) = ELBO(x) + ηELBO(Dθ(z))
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Fig. 2: Illustration of the AR-SIVAE framework. The encoder aims to distinguish,
through the ELBO value, between real and generated samples and regularize the
cardiac attributes in the latent space, while the decoder is induced to generate
samples to fool the encoder. Attri. Reg: Attribute regularization.

where α ≥ 0 and η ≥ 0 are hyper-parameters.

2.2 Proposed method: AR-SIVAE

In this work, we propose an Attribute Regularized Soft Introspective Variational
Autoencoder (AR-SIVAE) (Fig. 2) by adding the attribute regularization loss
defined in Eq. 2 to the encoder loss of the VAE. The optimization objective of
the encoder becomes:

LEϕ
(x, z) = γregLattr + ELBO(x)− 1

α
(exp(αELBO(Dθ(z)) (5)

where γreg is a hyperparameter that weights the attribute regularization loss
term. Accordingly to the guidelines described in [4], we always set α = 2. In
pratice, the optimization objectives are computed as follows:

LEϕ
(x, z) = γregLattr + s · (βrecLr(x) + βklLKL(x)) (6)

+
1

2
exp(−2s · (βrecLr(Dθ(z)) + βnegLKL(Dθ(z))))

LDθ
(x, z) = s · βrecLr(x) + s · (η · βrecLr(Dθ(z)) + βklLKL(Dθ(z))) (7)

where s is a normalizing constant set to the size of the images. Lr is the
reconstruction loss computed as a combination of the Mean Squared Error (MSE)
and perceptual loss weighted by an hyperparemeter αpl. The training process,
detailed in [4], is composed of two steps: first, the decoder is frozen, and the
encoder is updated, and then the encoder is frozen, and the decoder is updated.
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2.3 Dataset and Implementation details

Dataset: In this work, we processed the Cine MRI acquisitions of the short-axis
view of the UK Biobank study [15]. We selected all of the 5392 subjects who
self-declared to not have any cardiovascular disease using the UK Biobank field
20002. We preserve only the 5360 cases where the segmentation mask contains
at end-diastole (ED) and end-systole (ES) the following: more than 10 pixels per
region (left ventricle (LV), right ventricle (RV) and myocardium), more than six
slices segmented with no discontinuity (no missing segmentation between the
slices) and the mid-cavity slice has the LV and the RV segmented (similar to [1]
and detailed in the associated code). Per subject, we selected the basal slice at
ED and ES. The barycenter of the left ventricle was centred for each image and
was aligned with the right ventricular barycenter along the horizontal axis. The
images were cropped around the centre at a size of 128x128 pixels. The dataset
was split into 3752, 804 and 804 subjects for training, validation and testing,
respectively.

Attributes: We computed cardiac morphometric attributes for the regulariza-
tion based on the methods described in [1] and using the associated public code
5. We used the volume at ED and ES of the LV, RV and the myocardium denoted
LVEDV, RVEDV, MyoEDV, LVESV, RVESV and MyoESV respectively.

Implementation details: For the β-VAE-based methods, we followed the pub-
lic implementation associated 6. We trained for up to 1000 epochs (with a pa-
tience of 100 epochs) and used ADAM optimizer with a learning rate of 5e−5 For
the SIVAE-based methods, we followed the public implementation7 associated
with the publication [4]. We trained for up to 750 epochs (with a patience of
100 epochs), and we used two ADAM optimizers (one for the encoder and the
decoder) with a learning rate of 2e−4. For all methods, the size of the latent
space was fixed to 128 dimensions and we trained with a batch size of 128. The
hyperparameters were chosen empirically and detailed in Appendix A. An ab-
lation study of the influence of the weight given to the attribute regularization
is also conducted. More details on the implementation are available on the code
repository: https://github.com/compai-lab/2024-miccai-di-folco.

3 Experiments and results

We compared the proposed method AR-SIVAE to evaluate the reconstruction
performance and the interpretability of the learned representation against β-
VAE, SIVAE and Attri-VAE. The β-VAE and SIVAE methods do not include

5 https://github.com/baiwenjia/ukbb_cardiac/
6 https://github.com/1Konny/Beta-VAE/
7 https://taldatech.github.io/soft-intro-vae-web/

https://github.com/compai-lab/2024-miccai-di-folco
https://github.com/baiwenjia/ukbb_cardiac/
https://github.com/1Konny/Beta-VAE/
https://taldatech.github.io/soft-intro-vae-web/
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Table 1: Evaluation in terms of reconstruction performance of the compared
methods with or without attributed regularization (Reg. column) when trained
using only ES, only ED or both at the same time (ED/ ES column).

SSIM ↑ LPIPS ↓

Reg. All (ED/ES) ED ES All (ED/ES) ED ES

β-VAE ✗ 0.51/ 0.44 0.54 0.48 0.36/ 0.41 0.34 0.38
Attri-VAE ✓ 0.51/ 0.44 0.54 0.48 0.37/ 0.43 0.34 0.38

SIVAE ✗ 0.46/ 0.40 0.45 0.36 0.17/ 0.18 0.19 0.21
AR-SIVAE ✓ 0.47/ 0.40 0.46 0.40 0.17/ 0.20 0.17 0.18

attribute regularization, so will be used as baselines for the reconstruction perfor-
mance. Attri-VAE [14] is considered as the reference for attribute regularization
and interpretability of the latent space.

3.1 Reconstruction performance

We first assessed the reconstruction performance of the compared methods. We
experimented using as input only the ES or ED images, or both at the same
time as two different channels. Figure 3 illustrates the capacity of the SIVAE-
based methods to overcome the blurry reconstruction of VAE-based methods
for two samples (ED and ES are considered together and displayed for each
sample). We also report in Table. 1 the Structural Similarity Index Measure
(SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) metrics (the
latter is a measure of the perceptual similarity between two images) when con-
sidering ED and ES together (denoted as All) and individually. Both of the
VAE- and SIVAE-based methods achieved similar performance with and with-
out attribute regularization, suggesting that the addition of the regularization
term has minimal influence on reconstruction quality. Despite obtaining blurry
reconstructions (illustrated in Fig. 3), the VAE-based methods achieved slightly
higher SSIM scores. While it is a widely used metric to assess the similarity
between two images, the SSIM often fails to detect nuances of human perception
[23]. We employ the LPIPS metric to address this limitation, revealing a signifi-
cant improvement for the SIVAE-based methods. Furthermore, as expected, the
reconstruction of shape variability is more challenging for ES than for ED, result-
ing in lower performance globally for ES. Finally, in contrast to the VAE-based
methods, reconstructing ED and ES together has very little impact on the met-
rics compared to reconstructing individually them when using the SIVAE-based
methods.

3.2 Interpretability of the latent space

In this section, we evaluate the interpretability of the latent space when recon-
structing ES and ED together. Table. 1 shows the Interpretability score, which
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Fig. 3: Qualitative evaluation of the reconstruction of two samples at ES and
ED for β-VAE, SIVAE, Attri-VAE and the proposed method AR-SIVAE. The
first column corresponds to the ground truth (GT). The SIVAE-based methods
(4th and 5th columns) overcome the blurry reconstruction of VAE-based methods
(2nd and 3rd columns) especially for the cardiac regions of interest (illustrated on
the top left): Left Ventricle (LV), Right Ventricle (RV) and Myocardium (Myo).

measures the ability to predict a given attribute using only one dimension of the
latent space; the Separated Attribute Predictability (SAP), which calculates the
difference in Interpretability score between the two most predictive dimensions;
the Modularity metric [18], which quantifies whether each dimension of the latent
space depends on only one attribute; and the Spearman Correlation Coefficient
(SCC) which is the maximum value of the Spearman’s correlation coefficient
between an attribute and each dimension of the latent space. We observed that
adding the regularization to VAE- and SIVAE-based methods improved the per-
formance of SCC (improvement of 0.15 for VAE and 0.14 for SIVAE) and Inter-
pretability score (improvement of 0.4 VAE and 0.25 for SIVAE). Compared to
Attri-VAE, AR-SIVAE achieves similarly for the SCC, the Modularity and In-
terpretability scores (Appendix B reported all of the Interpretability scores per
attribute). By regularizing correlated attributes such as the cardiac volumes at
ES and ED, several regularized dimensions are able to predict another attribute
and this results in a lower SAP score.

Figure 4 illustrates a walk in the latent dimensions showing the evolution of
the regularized attribute. The proposed method is able to generate non-blurry
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samples contrary to Attri-VAE, while still displaying the variation of the con-
sidered attributes.

Table 2: Assessment of the interpretability of the latent space using the Spear-
man’s Correlation Coefficient (SCC), the Modularity score (Mod.), and the mean
Interpretability score (Interp.). For the latter, results are shown for all attributes,
as well as for the EDV- and ESV-specific ones. All the metrics are between 0
and 1, with 1 being the best performance.

Reg. SCC. Mod. SAP Interp.
All (EDV/ ESV)

β-VAE ✗ 0.67 0.80 0.30 0.48 (0.51/ 0.48)
Attri-VAE ✓ 0.96 0.85 0.09 0.88 (0.89/ 0.87)

SIVAE ✗ 0.78 0.86 0.40 0.60 (0.62/ 0.58)
AR-SIVAE ✓ 0.92 0.86 0.06 0.85 (0.88/ 0.82)

Fig. 4: Walk in the regularized latent dimensions of LV end-diastolic volume (first
row) and RV end-systolic volume (second row) for Attri-VAE (left) and AR-
SIVAE (right). The red arrows indicate the region of interest for each considered
attribute.

4 Conclusion

This paper introduces the Attribute Regularized Soft Introspective Variational
Autoencoder (AR-SIVAE), which combines attribute regularization with the
SIVAE framework to enhance the interpretability of the latent space while im-
proving image generation/reconstruction capabilities. We demonstrated its ef-
fectiveness in overcoming the issue of blurry generation inherent in VAE-based
methods. Nonetheless, the proposed method is limited by having a large number
of hyperparameters, which makes it challenging to achieve convergence. Future
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efforts will focus on extending attribute regularization to non-morphometric at-
tributes and leveraging the interpretable latent space in downstream cardiac
MRI classification tasks.
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