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Abstract. Chronic obstructive pulmonary disease (COPD) is a type
of obstructive lung disease characterized by persistent airflow limitation
and ranks as the third leading cause of death globally. As a heterogeneous
lung disorder, the diversity of COPD phenotypes and the complexity of
its pathology pose significant challenges for recognizing its grade. Many
existing deep learning models based on 3D CT scans overlook the spatial
position information of lesion regions and the correlation within different
lesion grades. To this, we define the COPD grading task as a multiple in-
stance learning (MIL) task and propose a hierarchical multiple instance
learning (H-MIL) model. Unlike previous MIL models, our H-MIL model
pays more attention to the spatial position information of patches and
achieves a fine-grained classification of COPD by extracting patch fea-
tures in a multi-level and granularity-oriented manner. Furthermore, we
recognize the significant correlations within lesions of different grades
and propose a Relatively Specific Similarity (RSS) function to capture
such relative correlations. We demonstrate that H-MIL achieves better
performances than comparative methods on an internal dataset com-
prising 2,142 CT scans. Additionally, we validate the effectiveness of the
model architecture and loss design through an ablation study. and the
robustness of our model on different central datasets. Code is available
at https://github.com/Mars-Zhang123/H-MIL.git.

Keywords: COPD Grading · Hierachical Mutiple Instance Learning ·
Relatively Specific Similarity Loss.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic airflow
obstruction disorder, characterized by a high incidence, mortality, and disability
rate [17]. Numerous studies [6, 8, 15, 18] have indicated that early diagnosis of
COPD can effectively prevent irreversible damage to the lungs. However, exist-
ing clinical diagnostic guidelines [22], which rely on pulmonary function tests,
have been shown in many recent studies [2, 13] to significantly lag behind early
structural changes in lung function(such as early remodeling of small airways and
small blood vessels). Image-based pulmonary function assessments, such as CT
scans, offer more intuitive and comprehensive pulmonary pathological structural
changes, crucial for the diagnosis, and intervention, particularly early warning
of COPD [4,14,19].

In recent years, deep learning methods have demonstrated excellent perfor-
mance in various medical image tasks due to their superior ability to analyze
complex data and perceive fine structures, showing a great potential for image-
based COPD diagnosis [7,11,16,21]. Nevertheless, as the original lung CT volume
is large, the objective of this study, which aims to achieve case-level disease inter-
pretation through comprehensive and detailed image understanding, evidently
contradicts the limitation of computational resources.

To handle this problem, most researchers endeavor to enhance model in-
puts to achieve information sparsification or information refinement. Ahmed et
al. [1] utilize the resized CT volume as input to predict positive cases using a
voxelResNet variant model. Hatt et al. [9] divide the lung CT into multiple re-
gions, randomly sample slices from different regions, downsample the slices, and
input the samples into a 2D CNN model. These methods attempt to directly
compress CT information or utilize networks to self-distill from a vast array of
complex data, aiming to achieve refined disease interpretation with a limited
computational burden, which directly results in the loss of fine structures or
limited perception capability of the network towards fine structures. The chal-
lenge of extracting meaningful information from vast and complex data to achieve
fine-grained disease interpretation remains. Moreover, existing methods mostly
focus on achieving early warning of COPD, which is essentially a binary clas-
sification problem. Studies related to refined grading diagnosis lag behind, and
some directly treat the COPD grading task as a multi-class classification prob-
lem [20, 24]. This fundamentally ignores the correlation between labels, namely,
the similarity and diversity of disease manifestations.

To address the aforementioned challenges, tailored to fine-grained COPD
classification, we present a hierarchical multi-instance learning approach with
a relatively specific similarity. Specifically, this involves the following two main
contributions. 1) Hierarchical multi-instance learning (H-MIL). To tackle
the challenges posed by limited computational resources and constrained model
information extraction capacity, we propose a Hierarchical multi-instance learn-
ing framework for a step-wise attention fusion and information extraction at
three levels: pixel-level, slice-level, and sub-bag level, through spatial attention
fusion and sub-bag design, enabling progressive information refinement. 2) Rel-
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Fig. 1. Overview of our proposed Hierarchical Multi-Instance Learning.

atively Specific Similarity (RSS). To learn the correlation between labels,
we innovatively introduce the Relatively Specific Similarity (RSS) into a loss to
drive network learning. It enables the network to achieve progressive label asso-
ciation learning on top of the original cross-entropy loss, enhancing the model’s
perception of multi-class correlations and classification performance.

Experiments are conducted for the two tasks of COPD binary classification
and COPD grading based on an in-house dataset as well as an external dataset,
demonstrating that the H-MIL successively encourages the attention on crucial
regions for classification, the correlation between the labels at the feature level,
modeled by RSS, has a great impact, and our proposed method outperforms
comparative method by a pronounced margin.

2 Method

In this task, the training dataset of labeled CT volumes is denoted as D =

{Xi, Yi}|D|
i=1, where Xi = {xi,j}ni

j=1 represents the i-th bag (i.e., CT volume). Our
objective is to learn the mapping : X → Y to realize the grading prediction of
COPD of each CT image. As shown in Fig. 1, there are two parts of our method:
1) Hierarchical Multi-Instance Learning, including pixel-level, slice-level, and
sub-bag level attention fusion, and 2) Relatively Specific Similarity.

2.1 Hierarchical Multiple Instance Learning

To alleviate computational burden while preserving comprehensive fine-grained
structural information as much as possible, we treat a 3D CT as a stack of 2D
slices, that is, a slice is an instance. Then, we introduce the concept of sub-
bags, each of which is regarded as a subset of a bag including a group of instances.
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Let Xsub
i,j denote the j-th sub-bag split from the i-th bag Xi, then Xsub

i,j =

{xi,j,k}
nj

k=1, where xi,j,k ∈ Rd is the k-th instance in this sub-bag after feature
extraction. It is noteworthy that, to achieve sub-bag level attention perception,
the sub-bag labels here are unknown, which differs from the "pseudo bag" design
inherited from the bag label in [23].

In this paper, we employ attention mechanisms to fusion sub-bag level fea-
ture [12]. The bag level features Fi can be formulated as follows:

Fi =

ni∑
j=1

ai,jfi,j , (1)

where fi,j ∈ Rd represents Xsub
i,j feature, and ai,j ∈ R represents its attention

scores in the sub-bag level, which can be derived by the attention gate:

ai,j =
exp{wT (tanh(V fT

i,j)⊙ sigm(UfT
i,j))}∑ni

k=1 exp{wT (tanh(V fT
i,k)⊙ sigm(UfT

i,k))}
, (2)

where w ∈ Rl×1,U ∈ Rl×d,V ∈ Rl×d are parameters and ⊙ is an element-
wise multiplication. H-MIL allows assigning different attention scores to various
sub-bags, enabling the network to identify crucial sub-bags more effectively. In
sub-bag level attention fusion, the model is unable to locate the specific positive
instance within the crucial sub-bag. Therefore, we require slice level attention
fusion to obtain fi,j . Slice level attention fusion employs the same method as sub-
bag attention fusion. After the slice level attention fusion , Fi can be formulated
as follows:

Fi =

ni∑
j=1

ai,j

nj∑
k=1

bi,j,kxi,j,k, (3)

where bi,j,k ∈ R represents the instance level scores of xi,j,k. Through slice level
attention fusion, the model can accurately locate those crucial instances.

We observe that lesions are unevenly distributed across different regions even
within a single instance. The main reason for this is that a single instance typi-
cally contains various types of lung structures, and these structures are dispersed
in different regions. As a result, the contribution of each region to the task varies,
which limits the model’s ability to accurately locate the fine structure of diseased
lesion areas. Inspired by [5], we denote the feature after preliminary encoding
as x′, then we convolve the x′ with three different convolution kernels to obtain
three features conv1, conv2, and conv3 of the same shape. The final instance-
level feature map x with pixel level attention can be obtained by the following
formula:

x = α× conv3 · P + x′ = α× conv3 · softmax(conv1
T · conv2) + x′. (4)

where x′, conv1, conv2, conv3, x ∈ RC×(H×W ) and P ∈ R(H×W )×(H×W ). P is the
pixel-level position attention matrix, and each value of the matrix represents the
relationship strength between two location pixels. Through the scale coefficient
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α, the allocated attention weight is dynamically adjusted. Combined with the
slice level attention map, H-MIL has a global contextual view at the instance
level, which greatly enhance its attention to the crucial pixels of regions inside
the instance.

2.2 Relatively Specific Similarity

In the task of COPD grading, there are four different GOLD grades based on
the FEV1 [22]: {GOLDi; i = 1 : 4}, with the severity of COPD increasing
from 1 to 4. From the perspective of similarity, we construct a corresponding
model to acquire and articulate these challenging similarities. In the real world,
the number of classes is infinite as FEV1 is continuously-valued, but we can
create an abstract base class that maintains the same feature similarity with
all classes. We define the base class as β, the set of all classes as C, and the
feature similarity between classes as γ. Then, we can express this relationship
using the following formula:

∀η ∈ C −→ γ(β, η) = µ. (5)

where η denotes an arbitrary class and µ is a positive constant. Considering
the similarity of features, we can represent the feature similarity between all
classes in the real world using a large adjacency matrix S ∈ Rn×n, whose entry
s(i, j) = γ(i, j) represents the similarity scores between the classes i and j. The
notion of absolutely abstract similarity (AAS) is defined as:

AASi,j = lim
n→∞

γ(i, j)

z
= lim

n→∞

γ(i, j)∑n
c=1 γ(β, c)

. (6)

where z is the normalization factor that represents the sum of similarities be-
tween all classes and the base class. The AAS satisfies a list of interesting prop-
erties that are provided in the supplementary materials.

The concept of AAS is extremely helpful in understanding the similarity be-
tween classes, but calculating the corresponding AAS for solving a specific prob-
lem becomes nearly impossible due to the enormity of computing the similarity
between a large number of classes. In order to solve a multi-class classification
problem, we usually only focus on the classes that are relevant to the specific
problem. Therefore, there is no need to calculate all the AAS in real-world sce-
narios. As a result, we introduce the concept of relatively specific similarity
(RSS) based on AAS. RSS solely considers the classes involved in a specific
problem and can be calculated as opposed to ASS. Similar to ASS, we define
RSSi,j as the similarity between class i and class j in a specific problem, which
can be obtained by the following formula:

RSSi,j =
AASi,j∑C
k=1 AASi,k

, (7)

where C is the number of classes involved in this classification problem. The
RRS also satisfies a list of interesting properties that are provided in the sup-
plementary materials.
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Based on RSS, we design a loss function as the following:

lossr = 1−
ŷ ·RSST

argmax(y)

Zargmax(y)
, Zi =

C∑
k=1

RSSi,k. (8)

where ŷ, y ∈ R1×C , and Zi ∈ R is a normalization factor for the i-th class.
The supervision of CE loss provides us with the opportunity to learn the

correlation between classes. In other words, the prediction distribution of the
model acts as a type of soft label and implies the relative similarity between
classes. Based on this view, we construct RSS to capture this similarity and
utilize it as an additional form of supervision. As we increase the weight of
RSS loss, the model undergoes a transition from hard to soft labels, thereby
continuously enhancing its understanding of inter-class similarity through self-
distillation:

Loss = (1− α)lossce + α · lossr. (9)

where α is parameter to balance lossce and lossr, which will increase from very
small values when the model is initially trained.

3 Experiments

Dataset Experiments are conducted using an in-house dataset of 2,142 normal-
dose CT scans acquired at end-inspiration. The tasks include binary classification
and GOLD grading of COPD. For binary classification, the labels are relatively
balanced, with 43% positive and 57% negative. However, within the positive
cases, the distribution of gold grades is extremely unbalanced, with proportions
of GOLD1 to GOLD4 being 18.5%, 54.1%, 20.1%, and 7.3%, respectively.

Implementation details To mitigate the instability caused by random sam-
pling, we randomly select samples from each label in equal proportions to form
the training set, validation set, and test set for each training session. This ap-
proach enhances the consistency of distribution among these three sets. The
ratio of the training set, validation set, and test set is 7:1:2. In each training
session, the model with the best performance on the validation set is selected
as the inference for the test set. All CT cases undergo the processing before
being inputted into the prediction model, which leverages DenseNet121 [10] as
the backbone network in our experiments.

Main results To verify the effectiveness of our proposed method, it is compared
with the mainstream MIL methods [3, 20] and the 3D CNN-based method [1]
both on the binary classification task and fine-grained grading task of COPD.
From Table 1 that reports the results of our approach and the comparative
methods, we observe the following. 1) our approach demonstrates superior per-
formance on both tasks. In particular, in the task of COPD grading, this su-
periority becomes even more apparent (+15.9% in precision, +16.4% in recall
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and +16.4% in F-score) in contrast with the second-best results. 2) Our method
showcases the highest recall scores both in binary classification and grading
tasks, which is very crucial in clinical practice, particularly for the early detec-
tion of diseases. 3) With our proposed method, utilizing stacked 2D slices as
input outperforms using 3D patches, indicating that for diseases with diffuse le-
sions like COPD, 2D slices can better preserve pulmonary structure and spatial
information, thereby enhancing the model’s ability to perceive abnormal regions.

Table 1. Quantitative results (%) of different methods on binary classification and
grading of COPD (Mean±Standard deviattion).

I : COPD binary classification

Method Accuracy Precision Recall F-score AUC

3D CNN [1] 70.1±1.3 68.3±1.7 69.1±1.2 68.5±1.4 70.2±1.5

MIL+Max-pooling 78.1±0.6 76.5±0.9 77.2±1.3 76.8±1.0 79.1±0.3

MIL+Avg-pooling 72.1±1.6 70.8±1.3 70.9±1.5 70.8±1.5 73.6±0.8

MIL+RNN [3] 79.5±0.3 78.1±0.2 77.7±0.3 77.9±0.2 80.4±0.1

MIL+Attn with 3D patches [20] 78.3±0.3 78.0±0.1 77.6±0.2 77.8±0.1 79.5±0.2

MIL+Attn with 2D slices [20] 79.4±0.3 79.6±0.8 78.9±0.3 79.3±0.6 81.0±0.4

H-MIL with 3D patches 85.4±0.4 84.8±0.5 85.3±0.4 85.1±0.4 86.7±0.3

H-MIL with 2D slices(Ours) 88.5±0.2 88.0±0.4 88.7±0.1 88.5±0.3 89.6±0.3

II : COPD grading

3D CNN [1] 40.6±3.9 37.4±2.7 39.6±4.5 38.1±3.3 44.1±2.3

MIL+Max-pooling 48.3±1.3 44.6±2.2 45.3±1.0 45.0±1.8 49.4±1.1

MIL+Avg-pooling 45.0±2.2 43.7±1.3 44.0±1.5 43.8±1.5 45.1±1.9

MIL+RNN [3] 54.3±1.2 53.6±0.7 52.5±0.8 53.2±0.7 55.9±0.9

MIL+Attn with 3D patches [20] 51.9±1.1 50.9±0.9 51.6±0.7 51.2±0.8 53.0±0.9

MIL+Attn with 2D slices [20] 50.8±0.7 48.9±0.6 49.2±0.5 49.0±0.5 51.4±0.6

H-MIL with 3D patches 65.7±0.8 64.6±1.2 65.0±1.0 64.9±1.1 66.9±0.6

H-MIL with 2D slices(Ours) 69.0±0.9 68.5±0.6 68.9±0.7 68.6±0.6 69.6±0.5

Ablation study To demonstrate the effectiveness of sub-bag, pixel level atten-
tion fusion (PLAF) in H-MIL and RSS-based loss, several comparative studies
are carried out in Table 2. 1) The significant performance improvement deliv-
ered by the pixel level attention fusion confirms that the importance of pixel
attention inside instance. 2) We show the superiority of sub-bag by introduc-
ing sub-bag partitioning, which improves the AUC by 2.8%. 3) By introducing
RSS-based loss, all the metrics of the model have been significantly improved,
which strongly demonstrates that the correlation between labels at the feature
level has a significant impact on COPD grading. 4) By halving the number of
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instances, the AUC of the model only shows a small decrease, which demon-
strates that our model does not depend on a substantial number of instances as
input and can achieve exceptional performance with only a moderate number of
instances. 5) To verify the influence of the number of sub-bags on the model, we
reduce the number of sub-bags to either the minimum or add to the maximum
while keeping the total number of instances unchanged. The results indicate that,
there is a certain extent of reduction in model performance, which confirms that
the number of sub-bags significantly affects feature attention aggregation in the
model.

Table 2. Results(%) of Ablation study of our proposed method (Mean±Standard
deviation).

Ablation for COPD grading

Method Params Metrics

Method ni nj Accuracy Precision Recall F-score AUC

baseline - 24 50.8±0.7 48.9±0.6 49.2±0.5 49.0±0.5 51.4±0.6

w/ PLAF - 24 55.2±1.6 56.1±1.3 54.9±1.0 55.4±1.1 56.3±0.9

w/ PLAF & sub-bag 4 6 58.4±1.1 57.3±1.4 58.0±0.9 57.7±1.2 59.1±1.5

w/ PLAF & sub-bag & Lossr 4 6 69.0±0.9 68.5±0.6 68.9±0.7 68.6±0.6 69.6±0.5

w/ PLAF & sub-bag & Lossr 4 3 67.7±0.5 67.3±0.6 66.7±0.9 66.9±0.7 68.4±0.8

w/ PLAF & sub-bag & Lossr 2 6 66.8±0.5 66.4±0.5 66.5±0.4 66.4±0.4 67.3±0.5

w/ PLAF & sub-bag & Lossr 6 2 66.1±0.8 66.0±0.3 65.7±0.5 65.8±0.4 66.5±0.5

External validation To further validate the generalization ability of our model
on low-dose CT datasets, we additionally employ a dataset curated from another
clinical site for testing purposes. This dataset comprises 118 negatives and 220
positives. We compare our method with MIL+Attn and 3D CNN using this
dataset. The AUC of our method is 87.3%, which indicates a reduction of 2.3%
compared to its performance on the previous test set. Notably, this reduction is
significantly smaller than the respective reduction of 5.4% for MIL+Attn cite-
sun2022detection and 4.7% for 3D CNN, thereby further substantiating the ro-
bustness of our model across different data centers.

4 Conclusion

In this paper, we propose a hierarchical multiple-instance learning method for
COPD grading with a relatively specific similarity. The hierarchical multi-instance
learning strategy achieves a progressive attention fusion and an effective informa-
tion refinement by introducing pixel-level fusion, slice-level fusion, and sub-bag
level fusion, enabling resource-friendly and fine-grained interpretation of lung
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lesions. Furthermore, to fully exploit the inter-label correlations in the task of
COPD grading, we introduce a Relatively Specific Similarity in the loss function
that constrains the model to continuously learn the correlations between disease
severity levels, thereby assisting the model in achieving better and more robust
disease grading. Extensive experiments illustrate the superior performance of
our method over comparative approaches both in binary and multi-class grad-
ing tasks for COPD, thus highlighting the algorithm’s great potential in clinical
disease diagnosis.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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