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Abstract. Scoliosis is currently assessed solely on 2D lateral deviations,
but recent studies have also revealed the importance of other imaging
planes in understanding the deformation of the spine. Consequently, ex-
tracting the spinal geometry in 3D would help quantify these spinal de-
formations and aid diagnosis. In this study, we propose an automated
general framework to estimate the 3D spine shape from 2D DXA scans.
We achieve this by explicitly predicting the sagittal view of the spine
from the DXA scan. Using these two orthogonal projections of the spine
(coronal in DXA, and sagittal from the prediction), we are able to de-
scribe the 3D shape of the spine. The prediction is learnt from over 30k
paired images of DXA and MRI scans. We assess the performance of the
method on a held out test set, and achieve high accuracy1.
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1 Introduction

The standard procedure to examine the spine for the presence of scoliosis is
using antero-posterior (AP) X-rays and measuring the angle between the most
tilted vertebrae [7]. Scoliosis typically affects growing children and proper diag-
nosis of scoliosis requires multiple follow-up scans. As such, Dual-energy X-ray
(DXA) scans, with its lower radiation dose than X-rays is quickly becoming an
acceptable alternative [12, 13, 18, 23]. However, this still does not solve the fun-
damental issue of scoliosis diagnosis; it is essentially a 3D disorder but the focus
is on the 2D lateral shift of the spine. Imaging this disorder on a Magnetic Res-
onance Imaging (MRI) is a good alternative, and multiple studies have shown
that there is indeed more useful information that can be extracted from MRIs
for scoliosis [4, 8, 11]. MRI however is more expensive and requires more time
for one single scan compared to X-ray/DXA.

In this paper, our objective is to obtain the 3D patient-specific spine shape
from a 2D DXA. We explore whether this is even possible given that 3D infor-
mation is “lost” in the projection of a 2D DXA scan. We show that it is possible
to learn to infer this “lost” information by leveraging a paired imaging set of
DXA scans with corresponding MRIs taken at roughly the same time. The MRI

1 Our code is available at https://www.robots.ox.ac.uk/~vgg/research/

dxa-to-3d/index.html

https://www.robots.ox.ac.uk/~vgg/research/dxa-to-3d/index.html
https://www.robots.ox.ac.uk/~vgg/research/dxa-to-3d/index.html
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Fig. 1. Inference. Given a DXA scan, the model predicts the coronal and sagittal
projections of the 3D spine. Once these two orthogonal views of the spine are obtained,
the 3D spine can be reconstructed. A detailed explanation of the procedure is given in
the Supplementary Material.

provides the 3D geometry of the spine, and a network can be trained to map the
3D spine from the 2D DXA. Through these two orthogonal curves, coronal and
sagittal, we can recover the 3D geometry of the spine.

1.1 Related Work

To date, the vast majority of scoliosis research has focused on 2D shape analysis
of the spine or part of the 3D spine [5, 12, 13, 14, 18, 23, 24]. Limitations of 2D
spine analysis arise particularly in classifying 3D curve shape. Indeed, deviations
are not limited to the coronal plane, they include twisting of the spine in multiple
directions [20], and the importance of other planes, e.g. for axial rotations, is well
recognized [10]. Recently, there has been a growing interest in the community
on EOS imaging with simultaneous acquisition of coronal and sagittal views
producing 3D spine shape [19]. This enables, for example, a better evaluation of
the effect of brace surgical treatment [2, 9].

There are several methods similar to ours; the most similar work is by
[17] which works on DXA scans and predicts the 3D model of the spine us-
ing statistical shape models (SSM). Other works use biplanar X-rays either with
SSM [1, 3, 6] or contour matching [26]. In our work, we directly estimate the
3D spine from a single 2D DXA. We leveraged the paired MRI attached to each
DXA scan in our dataset to learn the 3D estimate. Our 3D regression involves
only a single pass through a feed-forward network.
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DXA MRI 1st Stage Spines Not Aligned 2nd Stage

Fig. 2. DXA to MRI two-Stage Alignment. The two scans are iteratively aligned
using a three parameter planar transformation. From left to right: DXA scan; original
coronal projection of MRI scan (not-aligned to the DXA); overlay of MRI aligned to
DXA after the image-level alignment first stage; overlay of segmented spines after the
first stage; overlay of spine segmentation after the spine-level alignment second stage.

2 3D From 2D

Our method for estimating 3D spine geometry from a single 2D DXA is simple.
We essentially learn to regress 2D curves; first by directly regressing the curve
of the spine extracted from the 2D DXA itself (this is a coronal projection of
the 3D spine), and then by predicting the sagittal projection of the 3D curve
extracted from a paired MRI. This is only feasible through the use of a large-
scale public dataset, consisting of paired whole-body DXA and MRI of the same
subjects [22]. The challenges of this problem and the solutions we propose are
discussed separately in their respective sections: (i) image-level alignment of
modalities, and spine-curve alignment in Section 2.2, (ii) how to directly regress
2D curves from the DXA scan in Section 2.3.

2.1 Problem definition

The problem consists of regressing 2D spine curves obtained from the projections
of 3D MRI to 2D from a DXA image using a single model (see Figure 3). This can
be separated into two separate regression problems, namely: (i) the regression of
the coronal or AP curve, and (ii) the regression of the sagittal or lateral curve.
We define three sets of points Pi = {x ∈ R | 0 ≤ x ≤ 209 }, i = a, b, c for the
singular central and two lateral curves of the spine respectively. These define the
segmentation and mid-curve of the spine in the 2D projections. Our objective is
to regress these curves (in the coronal and sagittal planes) from the DXA scan.
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Fig. 3. Model Learning. The cropped DXA is the input to the regression network.
The regression targets are the DXA curve, and the sagittal curve (projected from
the 3D MRI spine). The alignment for the sagittal curve to DXA is obtained from the
alignment of the coronal projection of the 3D MRI to the DXA.Six curves are regressed:
the centerline of the spine as well as the left and right boundaries of the segmentation,
for both the coronal and sagittal views.

2.2 Modality Alignment

The paired images, the 2D DXA scans and the 3D MRIs, do not come registered.
Hence, the first step we take is to align these two modalities. As we are interested
in inferring the 3D information from 2D images; we register the 3D MRI and
the extracted spine curve to the 2D DXA. The alignment proceeds iteratively in
two stages: (i) a rough image-to-image alignment of the two imaging modalities
followed by, (ii) a finer alignment of the extracted segmentation/curve of the
spine from the MRI to the segmentation/curve of the spine from the DXA. See
Figure 2.

For the rough alignment, we use a pipeline proposed by [25] which finds the
best 2D transformation to align the 3D MRI (via its coronal projection) to the
2D DXA. The 2D transformations involve three parameters (a rotation angle
θ, and two translations). To compute the transformation, 10 rotation angles
are sampled in the range [−2, 2] degrees, and the translation is obtained by
convolving CNN spatial-feature maps of the DXA and MRI, and selecting the
point of maximum response.

For the second stage, we align the spine curves between the two modalities.
Again, the 2D transformation consists of a rotation and translation. We use
keypoint matching sampled along the spine contour of the DXA, and compute
the transformation that minimises the mean squared error (MSE).

It is possible that the person changed position too much between the DXA
and MRI scans, and it is not possible to align the spines due to deformations. To
check for this we measure the overlap of the spine segmented in the DXA scan
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Fig. 4. Image-Based Regression of Coronal and Sagittal Spine Curves. We
use a ResNet50, pre-trained on Imagenet-21k, with a transformer layer to regress the
spine curves (x(1,2,3)(z), y(1,2,3)(z)), z ∈ [0, 209] for left, center and right curves.

with the projection of the 3D spine segmented in the MRI(see Figure 2). We
apply a threshold for filtering out the badly aligned scans: if the Intersection-
over-Union (IoU) of spine masks is below 70%, then they are discarded. A total
of 14,065 paired DXA-MRIs are rejected by this test which is 28.8% of the data.

2.3 Learning the Regressor

Encoder. Our regressor consists of a multi-scale feature extractor coupled with
a transformer layer to learn the long-range dependencies more effectively (see
Figure 4). The initial part of the architecture consists of an image feature ex-
tractor with ResNet50 pre-trained on ImageNet-21k. The feature map of the
penultimate convolutional block is extracted as 7 × 7 × 2048 and fed into a
standard transformer layer adding the positional encoding, which is then aver-
age pooled, and flattened to a 2048-dimensional feature. The regression head
consists of linear layer to predict the output curve points from the transformer
output vector.
Loss. Our loss is the L1 difference between the target and predicted spine curve
points: L =

∑n
i=1

∣∣xi − x̂i
∣∣, where n is the number of samples, xi are the ground-

truth spine points, and x̂i the predicted spine points at a given zi.
We regress three curves for each view (coronal (x) and sagittal (y)): the

central curve of the spine as well as the left and right curves bounding the
segmentation. The central and lateral curve points are (x1,x2,x3,y1,y2,y3), where
1 and 3 are either the right/left or anterior/posterior curves depending on the
plane projection, and 2 is the central curve of the spine.

3 Dataset & Implementation Details

The UKBiobank is a publicly available dataset of 48,384 full-body Dixon MRI
paired with DXA scans [22]. The UK Biobank MRIs are resampled to be isotropic
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and cropped to a consistent resolution (700 × 224 × 224). The dataset is split
into 80:10:10 for training (27,816), validation (3,477), and testing (3,477) after
filtering the non-aligned scans by the dual alignment procedure explained in
section 2.2. Our training-validation-test is balanced in scoliosis cases, each con-
taining 20% of scoliosis cases. Our model takes as input a cropped DXA image
of the whole spine. This is achieved using a 224 × 224 cropping window of the
spine given spine segmentation from [5].
Obtaining the 2D spine from the DXA images. We obtain the spine
centroids and 2D spine mask segmentation in DXA which involves spine seg-
mentation using pseudo-labelling in an active learning framework [5, 13].This is
used as the target for the coronal view regressor.
Obtaining the 3D spine from the MRIs. We used a segmentation network
to obtain the 3D whole spine curve in the MRI (3D centroids and segmenta-
tion) [4] trained on adjacent axial slices (n-1,n,n+1) to limit the loss of depth
information. These labels are used for training our sagittal regression model.

3.1 Implementation Details

We use the Bottleneck Transformer from [21] with a ResNet-50 encoder for our
regressor; it regresses points for different projections of the 3D spine. For curve
regression, all DXA inputs and target spine curves are normalised to fixed height
for spine ranging from 0 to 209 pixels. We train our model for 500 epochs. We
use five-fold cross-validation, where we repeat validation on 5 stratified folds.
The batch size is set to 16, optimizer is Adam [15] with β = (0.9, 0.999), and
the learning rate is initially set to 1e−4 with decay every 200 epochs. We used
one 32GB Tesla V100 GPU. To reduce overfitting, we employ two techniques,
using dropout with a probability of p = 0.3 and we employ a regularizer to the
L1 loss. We also use different augmentation techniques with cropping, image
contrast and random Gaussian noise in training.

4 Results

4.1 Evaluation Metrics

Wemeasure the performance of our model using the mean absolute errorMAE =
1
n

∑n
z=1 |yz − ŷz|, and the mean of the relative error RE = 1

n

∑n
z=1

|yz−ŷz|
ŷz

be-

tween the predicted points ŷz and the ground truth yz, z ∈ [0, 209]. The mean
of RE is always between 0 and 1, the lower the relative error the better. To
assess the accuracy of whole spine predicted masks obtained from the area be-
tween the lateral curves compared to project ground-truth masks obtained from
segmentation of the MRI, we use the 2D Intersection-over-Union, IoU .

4.2 Spine Curves Estimation and Robustness

The DXA and Coronal MRI spine curves are predicted at sub-pixel level precision
with better precision and lower variance for the combined ResNet50+Transformer
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Input Coronal GT Sagittal Predicted Sagittal GT Sagittal Predicted Sagittal GT Spine Predicted Spine

Fig. 5. Qualitative Results of DXA to MRI Sagittal Curve Generation on the
Test Set. We show from left to right, the input DXA, the ground-truth sagittal curves,
predicted sagittal curves, ground-truth spine mask, predicted spine mask overlayed
on MRI sagittal slice (n=112), the ground-truth 3D spine, and its prediction using
Gaussian rendering. The severity of the scoliosis increases from top to bottom.

framework (MAE = 0.66 ± 0.21, RE = 0.084 ± 0.02, IoU = 89.6) compared
to ResNet50 or ViT (see Table 1). We show that using residual blocks with a
transformer layer, our model can reliably estimate not only the coronal MRI
projection from a single DXA but any spine curve projections along a 360◦ rota-
tion about the vertical axis such as the sagittal projections (MAE = 1.65± 0.6,
RE = 0.21± 0.08, IoU = 86.8), see Table 1). Our model is also able to capture
the pattern of curves with straighter sagittal curves for more severe cases of
scoliosis (see Figure 5).
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Fig. 6. Mean Average Precision of Predicted Spine Masks for Different IoU
Thresholds. IoU thresholds start from 0.1 to 0.9 following COCO dataset [16], with
steps of 0.1. We show that our model ResNet50+Transformer surpasses baselines for
3D spine shape estimation.

3D evaluation. We also evaluate the performance of our model to reconstruct
3D spines from 2D DXAs. We effectively have a segmentation of the spine
bounded by the lateral curves from our pipeline. We use an untouched set of
150 MRIs from the UKBiobank manually annotated spines from [4] to measure
the IoU. In Figure 6, we show the segmentation performance of predicted spines
in the orthogonal views. We also measure the average deviation of spine curve
point-wise along the spine as a metric for 3D error. Our best model ResNet50
+ Transformer achieves a 3D average spine curve deviation of 1.42 voxels or
3.12mm and a 3D spine mask IoU of 83.8 ± 1.1px. See Figure 6 for visualising
the mean average precision at different IoU thresholds.
Discussion. One probable reason that the model is able to infer a sagittal view
from coronal DXA is that it has access to the entire (cropped) DXA scan, and
there are at least two cues it can use: (i) the different intensities of the imaged
bones of the spine give information about their angle and depth; and (ii) the
position of the rib cage in the image depends on the spine, and so indirectly the
2D layout of the ribs in the image gives information about the spine.

5 Conclusion

Our model is able to give a patient-specific representation of the spine in 3D
from a single DXA scan. We show that our method is effective in capturing
the intricacies of the 3D spine. As such, this work has the potential to assist in
the diagnosis and screening of scoliosis and other spinal disorders. Our primary
focus for future work includes investigating confidence prediction for the sagittal
curve.
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Configuration Model

Spine Curves
Absolute Error

Spine Curves
Relative Error

Spine Mask

Mean Median SD Mean Median SD IoU

ResNet50 0.71 0.70 ±0.26 0.08 0.076 ±0.03 91.4
DXA ViT 0.69 0.67 ±0.24 0.073 0.071 ±0.02 91.9

ResNet50 + Transformer 0.58 0.57 ±0.18 0.062 0.057 ±0.01 92.3

Coronal MRI
ResNet50 0.81 0.79 ±0.3 0.11 0. 094 ±0.05 88.3

ViT 0.78 0.78 ±0.28 0.091 0.083 ±0.03 88.9
ResNet50 + Transformer 0.66 0.64 ±0.21 0.084 0.079 ±0.02 89.6

Sagittal MRI
ResNet50 3.63 3.29 ±1.2 0.41 0.39 ±0.14 83.6

ViT 2.99 2.73 ±1.1 0.38 0.36 ±0.11 84.1
ResNet50 + Transformer 1.65 1.58 ±0.6 0.26 0.21 ±0.08 86.8

Table 1. Performance of Image-based Models for Spine Curves Regression.
For a given input DXA, we predict curves from the DXA target 1st block or curves from
the corresponding MRIs 2nd and 3rd blocks. For each target, we predict 3 curves (center
+ 2 laterals) for each block. The 2nd and 3rd blocks is a single multi-view model which
outputs coronal and sagittal curves. The 1st column specifies the model configuration
with output curve modality (DXA for baseline, coronal and sagittal MRI), the 2nd

column the different models, the 3rd column and the 4th column for absolute error and
relative error respectively in terms of mean, median and standard deviation of spine
curves predicted and reference curves in pixels. The far right column shows the 2D IoU
of the masks bound by the lateral spine curves.
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