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Abstract. PET-CT integrates metabolic information with anatomical
structures and plays a vital role in revealing systemic metabolic abnor-
malities. Automatic segmentation of lesions from whole-body PET-CT
could assist diagnostic workflow, support quantitative diagnosis, and
increase the detection rate of microscopic lesions. However, automatic
lesion segmentation from PET-CT images still faces challenges due to
1) limitations of single-modality-based annotations in public PET-CT
datasets, 2) difficulty in distinguishing between pathological and phys-
iological high metabolism, and 3) lack of effective utilization of CT’s
structural information. To address these challenges, we propose a three-
fold strategy. First, we develop an in-house dataset with dual-modality-
based annotations to improve clinical applicability; Second, we intro-
duce a model called Latent Mamba U-Net (LM-UNet), to more ac-
curately identify lesions by modeling long-range dependencies; Third,
we employ an anatomical enhancement module to better integrate tis-
sue structural features. Experimental results show that our comprehen-
sive framework achieves improved performance over the state-of-the-art
methods on both public and in-house datasets, further advancing the
development of AI-assisted clinical applications. Our code is available at
https://github.com/Joey-S-Liu/LM-UNet.
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1 Introduction

Positron Emission Tomography-Computed Tomography (PET-CT) combines
the metabolic activity provided by PET with the anatomical details provided
by CT, offering desirable diagnostic capability in medical imaging [3]. The le-
sion regions can be distinctly marked by employing 18F-FDG as the PET tracer,
thereby enabling the identification of tumors, inflammation, and infections. How-
ever, given the complexity of imaging, there emerges a necessity to design an au-
tomatic framework for 3D whole-body lesion segmentation based on PET-CT.

With the advancement of deep learning, numerous approaches have emerged
for segmenting whole-body lesions from PET-CT scans. U-Net [17] and its vari-
ations [1,7,8], alongside specialized models [11,18] specifically designed for PET-
CT lesion segmentation, have demonstrated remarkable efficacy. Notably, Shi et.
al. [18] introduced a Transformer-based multi-path parallel embedding module
for tumor segmentation, effectively harnessing the complementary information
provided by PET and CT modalities. However, despite these advancements, the
performance of these approaches is still constrained, primarily due to 1) single-
modality-based annotation in publicly available PET-CT datasets, 2) challenges
in discerning between pathological and physiological high metabolism, and 3)
under-exploitation of the advantages offered by the “PET+CT” mode over the
“PET only” mode. All these challenges will be explained below.

Firstly, current public PET-CT datasets only have lesion masks annotated
on one modality, which proves inadequate for accurate tumor segmentation. For
instance, bone metastases and early-stage liver or spleen lesions may exhibit
clear abnormalities on PET scans while showing no structural changes on CT
scans. Relying solely on one modality for annotation in such scenarios can yield
misleading interpretations. Thus, dual-modality-based annotation is essential to
better cater to clinical requirements.

Secondly, distinguishing pathological from physiological high metabolism poses
a challenge due to the complexity of human metabolic activities. Patholog-
ical metabolic regions, like tumors, often closely border normal physiological
metabolic regions, complicating the accurate identification of abnormalities. Long-
range modeling techniques, such as state space sequence models (SSMs) [10] and
structured state space sequence models (S4) [6], have shown promise in extract-
ing effective information from noise which offer significant implications for dis-
tinguishing pathological metabolism from surrounding physiological metabolism.
However, while Mamba [5] significantly improves concentration on pertinent in-
formation compared to S4, its current applications in medical imaging [13,21]
lack emphasis on crucial high-level features, such as identifying pathological
characteristics. Thus, employing a hybrid CNN-Mamba structure allows us to
leverage Mamba’s capabilities to focus specifically on the high-level features of
PET-CT in the latent space.

Thirdly, the advantages of the “PET+CT” mode remain under-exploited.
Current segmentation methods often heavily rely on PET due to its high inten-
sity towards tumor regions, while the potential contribution of CT features is
often under-explored due to ineffective structural constraints in CT data.
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To tackle these challenges, our paper introduces a dual-modality-based an-
notation strategy alongside a novel network (LM-UNet) tailored for whole-body
lesion segmentation from PET-CT.

Our contributions can be outlined as follows:

– We propose a dual-modality-based annotation method for our in-house 3D
whole-body PET-CT dataset, which shows promising performance for clini-
cal application.

– We develop a novel multi-task hybrid CNN-Mamba network, called LM-
UNet, which can model long-range dependencies on high-level features in
the latent space. Besides, we introduce an anatomical enhancement module
to better constrain anatomical shape of lesions.

– Experimental results show that our method obtains superior performance on
both public and in-house datasets over the representative methods, especially
its clinical practicality on our in-house dataset.

2 Method

We will mainly explain our method from three aspects: 1) dataset construction
with dual-modality-based annotation as described in Section 2.1, 2) segmentation
model using hybrid CNN-Mamba structure as detailed in Section 2.2 as well
as anatomical enhancement module as introduced in Section 2.3, and 3) loss
functions utilized in our work as formulated in Section 2.4.

2.1 Dual-Modality-based Annotation Strategy

As shown in Fig. 1, each modality has its own emphasis in annotation, there-
fore we use a dual-modality-based annotation strategy on our in-house dataset.
Specifically, each set consists of a PET volume, a corresponding CT volume, and
both PET and CT lesion masks, annotated by three trained annotators with the
support of two senior nuclear medicine physicians.

2.2 Hybrid CNN-Mamba Encoder

Mamba has achieved outstanding performance compared to other methods in the
domain of long-range modeling, which can yield a significant improvement for the
high-level feature extraction. As depicted in Fig. 2, we merge CT lung window
volume, CT soft tissue window volume, and PET SUV volume into a three-
channel input x ∈ RH×W×D×C with C = 3. An 8× downsampling CNN encoder
transforms the input into a latent space representation xL ∈ RH

8 ×W
8 ×D

8 ×J , de-
noted as xL = a0.

The feature map from the CNN encoder is partitioned into non-overlapping
patches using convolution, then flattened into xM ∈ RN×K where N = (H8 ×
W
8 × D

8 ) is the length of the sequence and K is the hidden dimension. We then
add a 1D learnable positional embedding xpos ∈ RN×K to xM for forming z0 as
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Fig. 1. (a) Illustration of an annotation condition where bone metastases (as shown in
PET scan) have no corresponding structural change in CT scan, highlighting discrep-
ancies between two modalities. (b) Demonstration of how the same lesion’s annotated
boundaries vary between CT and PET due to distinct characteristics of each modality.

Fig. 2. Overview of the proposed LM-UNet architecture. Multi-channel volume is fed
into a Hybrid CNN-Mamba encoder for feature extraction. Then these extracted fea-
tures are passed into two parallel decoders for lesion segmentation of CT and PET,
respectively. Particularly, the CT lesion segmentation decoder employs the proposed
anatomical enhancement module (AE).

the input of Mamba encoder. The input and output dimensions of Mamba block
are both RN×K .

The Mamba encoder consists of multiple Mamba blocks, each with similar
block structure as Vision Transformer (ViT) [2]. The only difference is that
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the Mamba layer replaces the multi-head self-attention in the ViT block. The
detailed formulation is given below:

z̃l = Mamba(LN(zl−1)) + zl−1, l = 1 · · ·L,
zl = MLP (LN(z̃l)) + z̃l, l = 1 · · ·L,

(1)

where z0 is the input of the Mamba encoder, and Mamba denotes the Mamba
layer. MLP denotes Multi-Layer Perceptron, and LN is the layer normalization
operator. As the output of Mamba encoding, zL is the final representation of
the whole encoding process.

2.3 Anatomical Enhancement Module

The anatomical enhancement module (AE) is introduced to provide detailed
anatomical constraints. We reshape zL to b0 with a dimension of b0 ∈ RH

8 ×W
8 ×D

8 ×J

for compatibility with the CNN upsampling process. The LM-UNet decoder has
two paths, i.e., one for PET lesions, (by using a ResNet architecture with skip
connections), and another for CT lesions, (by incorporating an AE strategy for
skip connections). The proposed AE module is defined as:

b̃i = Conv1(ai + bi) + Conv2(ai + bi), i = 0, 1, 2

bi+1 = TransConv(CBAM(b̃i)), i = 0, 1, 2
(2)

where Conv1 represents a larger kernel (7×7×7) and Conv2 represents a smaller
kernel (3×3×3) to focus on narrow edge information. CBAM [20] improves
network performance by focusing on important channels and spatial locations.
We find that multi-scale convolutions combined with the CBAM module can
effectively enhance segmentation performance, particularly for fine structural
details.

2.4 Loss Function

Our model employs a dual loss strategy, combining Dice Loss [14] and Cross
Entropy Loss. For each modality, the loss is defined as:

L = Ldice + Lce, (3)

Therefore, combining the loss for CT LCT and the loss for PET LPET , we have
the overall loss function as below:

Lall = LCT + LPET . (4)

This balanced loss between CT and PET ensures effective learning for both
modalities.
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3 Experiments

3.1 Datasets and Annotations

To assess the performance of our proposed architecture, we utilize the public
dataset autoPET [4] and our in-house dataset from three medical centers.

autoPET. The public autoPET dataset consists of 1014 3D whole-body FDG
PET-CT sets from 900 patients, annotated by two experts. Each set includes a
PET volume, a corresponding CT volume, and a binary mask for tumor lesions
based on PET. Approximately half of these cases are cancer-free, and the rest are
with histologically-confirmed malignant melanoma, lymphoma, or lung cancer.
To align two image modalities in spatial resolution, we resample the CT scans
to the same resolution as PET images.

In-house dataset. The in-house dataset collected from three medical centers
consists of 344 3D whole-body PET-CT sets from patients with cancer-positive,
covering various types of cancer such as lymphoma, lung cancer, and intestinal
cancer.

For both datasets, 90% of the cases are kept for training and cross-validation,
and the rest 10% of the cases are used as test set.

3.2 Implementation Details

We implement our framework in PyTorch8 on one NVIDIA A100 GPU equipped
with 80G RAM. For fair comparison, all the investigated models are trained
according to the nnU-Net [9] scheme. Namely, the default settings of nnU-Net
are used for pre-processing, data augmentation, and training strategy. We crop
the input volume into patches with a size of 128×128×128. All the models are
trained using the AdamW [12] optimizer from the scratch for 1500 epochs. We
set the learning rate as 10−4 and the mini-batch size as 2. In the inference phase,
we follow the nnU-Net using the scheme of sliding window.

3.3 Quantitative Evaluation

To quantitatively evaluate our method, we compare with three CNN-based seg-
mentation networks (nnU-Net [9], SegResNet [15], and Attention U-Net [16]),
three Transformer-based networks (TransBTS [19], UNETR [8], and Swin UN-
ETR [7]), one PET-CT lesion segmentation network (H-DenseFormer [18]), and
two Mamba-based networks (U-Mamba [13], and SegMamba [21]). SegResNet,
Attention U-Net, UNETR, and Swin UNETR are selected from MONAI9. We
use Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD95) as
evaluation metrics.
8 http://pytorch.org/
9 https://monai.io/

 http://pytorch.org/
 https://monai.io/
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Table 1. Quantitative results of different methods on public dataset. The best results
are highlighted in red and the second best results are highlighted in blue.

Methods DSC ↑ HD95 (mm) ↓
autoPET

nnU-Net (2018) [9] 0.7421±0.1123 39.6±10.6
SegResNet (2018) [15] 0.7315±0.0934 40.0±11.2

Attention U-Net (2018) [16] 0.6687±0.1162 74.3±22.0
TransBTS (2021) [19] 0.7099±0.0915 40.1±15.1
UNETR (2018) [8] 0.7168±0.1272 53.4±14.6

Swin UNETR (2022) [7] 0.7298±0.0769 49.6±9.5
H-DenseFormer (2023) [18] 0.7131±0.1326 34.5±10.1
U-Mamba Enc (2024) [13] 0.7359±0.0862 39.2±13.4

SegMamba (2024) [21] 0.7304±0.1025 48.0±9.2
LM-UNet 0.7543±0.0801 34.5±8.6

Table 2. Quantitative results of different methods on in-house dataset. The best
results are highlighted in red and the second best results are highlighted in blue.

Methods DSC ↑ HD95 (mm) ↓
CT PET CT PET

In-house Dataset
nnU-Net (2018) [9] 0.6705±0.1212 0.8273±0.0652 53.1±20.6 23.6±7.8

SegResNet (2018) [15] 0.6511±0.1343 0.8331±0.0748 55.9±24.9 22.8±8.1
Attention U-Net (2018) [16] 0.6294±0.1736 0.8097±0.0410 59.2±22.6 21.1±6.8

TransBTS (2021) [19] 0.6392±0.2013 0.8143±0.0578 56.8±22.9 24.2±8.1
UNETR (2018) [8] 0.5910±0.1437 0.8102±0.0477 52.0±25.0 22.7±8.1

Swin UNETR (2022) [7] 0.6427±0.1826 0.8204±0.0328 51.0±24.5 19.2±6.9
H-DenseFormer (2023) [18] 0.6302±0.1598 0.8111±0.0463 60.2±30.7 26.1±10.6
U-Mamba Enc (2024) [13] 0.6648±0.1291 0.8201±0.0491 49.6±22.2 22.6±8.3

SegMamba (2024) [21] 0.6683±0.1062 0.8344±0.0627 52.8±26.0 23.3±8.2
LM-UNet 0.6998±0.1111 0.8492±0.0499 50.9±23.2 20.3±7.2

We summarize the quantitative results in Table 1 and Table 2. It is shown
that our LM-UNet outperforms the state-of-the-art methods by a large margin,
especially for CT lesion segmentation on our in-house dataset. Besides, we can
find that all the Mamba-based methods have shown promising performance. It
is worth noting that for the autoPET dataset, since it contains single-modality-
based annotation, we use the structure of the CT branch as the decoder in our
LM-UNet. For the models that are originally designed for single-task segmenta-
tion, we use the same decoder as their original work for both annotation branches
on our in-house dataset.

3.4 Qualitative Evaluation

Besides quantitative evaluation, we also conduct visual comparison for qual-
itative evaluation on our dual-modality-based annotated in-house dataset. We
demonstrate the comparison in Fig. 3. We can see that our LM-UNet has superior
capability in differentiating pathological from normal physiological metabolism
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Fig. 3. Qualitative results for two representative cases on our in-house dataset. Upper
two rows: Case 1; Bottom two rows: Case 2.

and provides modality-specific insights. For example, within the kidney, which
is a region of daily high metabolic activity, our model is capable of precisely de-
termining whether the observed metabolism is pathological. Besides, in the liver
and bone regions, our model can accurately avoid potential misunderstanding
based on the normality in CT images.

Table 3. The impact of AE module on segmentation performance.

Methods DSC ↑ HD95 (mm) ↓
CT PET CT PET

In-house Dataset
LM-UNet w/o AE 0.6812±0.1203 0.8471±0.0503 51.4±24.9 22.5±6.9
LM-UNet w/ AE 0.6998±0.1111 0.8492±0.0499 50.9±23.2 20.3±7.2

3.5 Ablation Studies

Effectiveness of AE Module. We conduct an ablation study on AE module to
verify its effectiveness on our in-house dataset. The results are listed in Table 3.
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We can see that AE improves the performance in the lesion segmentation of CT
images in terms of both DSC and HD95.

4 Conclusion

In this work, we propose a threefold strategy for whole-body PET-CT lesion
segmentation. Specifically, we develop a dual-modality-based annotation strat-
egy to improve clinical applicability. Besides, we introduce a novel segmentation
network, called LM-UNet, to accurately identify lesions by modeling long-range
dependencies. Moreover, we present an anatomical enhancement module to bet-
ter constrain anatomical shape of lesions. Experiments on both public and in-
house datasets demonstrate that our LM-UNet not only achieves outstanding
performance in whole-body automatic lesion segmentation from PET-CT, but
also shows promising potential for the use of dual-modality-based annotation.
Through these efforts, we aspire to contribute to the advancement of AI-assisted
diagnostic applications, ultimately improving patient care and outcomes.
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