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Abstract. To acquire information from unlabeled data, current semi-
supervised methods are mainly developed based on the mean-teacher or
co-training paradigm, with non-controversial optimization objectives so
as to regularize the discrepancy in learning towards consistency. However,
these methods suffer from the consensus issue, where the learning pro-
cess might devolve into vanilla self-training due to identical learning tar-
gets. To address this issue, we propose a novel Reciprocal Collaboration
model (ReCo) for semi-supervised medical image classification. ReCo is
composed of a main network and an auxiliary network, which are con-
strained by distinct while latently consistent objectives. On labeled data,
the main network learns from the ground truth acquiescently, while si-
multaneously generating auxiliary labels utilized as the supervision for
the auxiliary network. Specifically, given a labeled image, the auxiliary
label is defined as the category with the second-highest classification
score predicted by the main network, thus symbolizing the most likely
mistaken classification. Hence, the auxiliary network is specifically de-
signed to discern which category the image should NOT belong to. On
unlabeled data, cross pseudo supervision is applied using reversed pre-
dictions. Furthermore, feature embeddings are purposefully regularized
under the guidance of contrary predictions, with the aim of differentiat-
ing between categories susceptible to misclassification. We evaluate our
approach on two public benchmarks. Our results demonstrate the supe-
riority of ReCo, which consistently outperforms popular competitors and
sets a new state of the art.

Keywords: Semi-supervised learning · Medical image classification ·
Contrary predictions.
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1 Introduction

The development of data-driven deep learning models [27,8] has significantly
advanced the performance of medical image classification [1,23]. However, their
success can largely be attributed to the myriad number of paired image-label
data. Given that data annotation within a clinical practice context is time-
consuming and often demands expert knowledge, the application of deep learning
models remains challenging. The ease of acquiring unlabeled data from clinical
sites presents a potential solution. Semi-supervised learning (SSL) [20,2], which
effectively utilizes abundant unlabeled data alongside limited labeled data, is
increasingly gaining popularity as an alternative solution [22,9,24].

Existing SSL methods primarily fall into three categories. First, pseudo-
labeling methods (see Fig. 1(a)) elaborately design pseudo-label selection stan-
dards to identify credible pseudo-labels from the perspective of probability-based
threshold [16] or loss-base estimation [26]. Despite their ability to utilize correct
pseudo-labels, these methods heavily rely on the warm-up on labeled data and,
hence, are potentially vulnerable to erroneous pseudo-labels with high classifica-
tion scores, a problem known as confirmation bias or overconfidence issue [10].
Second, Co-training methods (see Fig. 1(b)) usually employ weak-to-strong
regularization [19] with varying network architectures. Although these methods
can capture complementary knowledge by constraining discrepancy [25], they
bear the risk of devolving into naive self-training, due to the same training
objective [18]. Third, Self-ensembling methods (see Fig. 1(c)) predominantly
operate within a teacher-student framework, where the parameters of the teacher
are updated by the student via exponential moving average [21]. While this ap-
proach seems advantageous as it utilizes a stable teacher to supervise the student
for unlabeled data learning, the teacher and the student will gradually converge
to the same target [15], resulting in a decrease in information gain.

To address these issues, it is necessary to explore the SSL paradigm that
can maintain network independence for differential information mining, while
also minimizing the impact of erroneous predictions. As we delved into the co-
training or self-ensembling framework, we found that there are two networks.
Both networks are forced to learn an identical target, i.e., determining the cat-
egory to which an image belong. As a result, these networks tend to produce
similar predictions when confronted with unlabeled data. However, as evidenced
by [25,18,15], this is not a promising SSL method desires. Rather, disagreement
between the networks is the crux of the matter. To this end, we advocate a vi-
able principle, i.e., learning two distinct but implicitly consistent networks (see
Fig. 1(d)). One network is trained to recognize the category by default, while
the other is regularized conversely by learning which category the image should
NOT belong to. As a result, this principle preserves network discrepancy and
mitigates the error rate from a contrary prediction perspective.

Accordingly, we propose a Reciprocal Collaboration framework (ReCo) for
semi-supervised medical image classification. ReCo is composed of a main net-
work and an auxiliary network. Given a labeled image, the main network is su-
pervised by the ground truth, while the auxiliary network is constrained jointly
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Fig. 1. A brief comparison between (a∼c) current popular SSL schemes and (d) our
scheme. The right two t-SNE visualizations are produced by PEFAT [26] and our
proposed ReCo, on the ISIC 2018 dataset.

by the ground truth and an auxiliary label. This auxiliary label is derived from
the prediction of the main network. Concretely, the classification score corre-
sponding to the auxiliary label is the second highest, thus the auxiliary label can
represent the category most susceptible to misclassification. Thus, our goal to
facilitate two differentiated but coherent networks is achieved. As for unlabeled
data learning, reversed predictions are utilized to perform cross pseudo supervi-
sion. To make full use of the information related to which category is likely to be
miscalculated, we conduct a feature-level contrast under the guidance of oppos-
ing predictions, aiming to intentionally segregate class representations prone to
confusion. Based on the reciprocal collaboration, model accuracy is further en-
hanced due to improved formation of clusters and clearer boundary delineations,
as illustrated in the t-SNE visualization on the right side of Fig. 1.

The main contributions are three-fold: (1) we propose a novel perspective
of learning opposite targets, bringing the superiority of maintaining network di-
versity; (2) benefiting from the contrary predictions, categories that are prone
to confusion can be distinguished more effectively, with the by-products of im-
proved accuracy and visible decision boundary; and (3) extensive experiments
validate the advantage of the proposed ReCo, which outperforms cutting-edge
SSL methods on two public benchmarks, setting a new state of the art.

2 Method

2.1 Preliminaries

In semi-supervised learning (SSL), a labeled set Dl =
{
(xl

i, y
l
i)
}Nl

i=1
and an unla-

beled set Du = {(xu
i )}

Nu

i=1 are typically given, where Nl and Nu are the number of
images with Nl ≪ Nu. SSL aims at developing an algorithm that can effectively
acquire knowledge from limited labeled data and sufficient unlabeled data.
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Fig. 2. Workflow of our proposed ReCo. ReCo is composed of two randomly initial-
ized networks with same architecture, i.e., DenseNet-121 [7]. The training objectives
of f(·, θmain) and f(·, θaux) are entirely different. Specifically, for an input image,
f(·, θmain) aims for finding out the ground truth, while f(·, θaux) focuses on which
category this image shouldn’t belong to. Despite the goals are different, their reversed
predictions are implicitly consistent. Thus, unlabeled data can be mined grounded on
the contrary predictions from both feature-level and logit-level perspectives.

Fig. 2 presents the diagram of our proposed ReCo. For labeled data learning,
the main network f(·; θmain) is supervised by the ground truth, with the aim
of learning which category this image ought belong to. Whereas the auxiliary
network f(·; θaux) is taught to predict which category this image shouldn’t be-
long to, under the assistance of generated auxiliary label. As for unlabeled data
learning, bi-level constraints are designed according to the contrary predictions.
We now delve into details of each component.

2.2 Reciprocal Cooperation Enhances Labeled Data Learning

Current SSL methods are mainly designed based on the self-ensembling mean
teacher or co-training paradigms. Despite appeared to be promising, models
regularized under these schemes tend to produce similar predictions due to ex-
ponentially moving-averaged weights and identical training targets. To maintain
the specificity of sub-networks, we propose to train two networks (denoted as
f(·; θmain) and f(·; θaux)) with distinct while potentially consistent (if reversed)
learning objectives. Specifically, for labeled data learning, the main network
f(·; θmain) follows a common supervised learning process, denoted as:

Lmain = − 1

Nl

Nl∑
i=1

yli log(f(ŷ
l
i,main|xl

i; θmain)), (1)
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where ŷli,main is the predicted label with the highest classification score. Also,
we can obtain the category yli,main that shares the second highest classification
score. Here yli,main can be calculated as:

yli,main = argmax(f(xl
i; θmain)\

{
ŷli,main

}
), (2)

where yli,main (denoted as auxiliary label) represents the category that has the
characteristic of being easily misclassified. To effectively leverage this informa-
tion and potentially avoid misclassification, we introduce an auxiliary network
f(·; θaux) to predict which category the image shouldn’t belong to. To achieve
this goal, we constrain f(·; θaux) using the following formula:

Laux = − 1

Nl

Nl∑
i=1

yli,main log(f(ŷ
l
i,aux|xl

i; θaux))︸ ︷︷ ︸
term for auxiliary label

+ yli log(1− f(ỹli,aux|xl
i; θaux))︸ ︷︷ ︸

term for ground truth

 ,

(3)
ŷli,aux = argmax(f(xl

i; θaux)), ỹli,aux = argmin(f(xl
i; θaux)), (4)

where ŷli,aux and ỹli,aux stand for the predicted classes produced by f(·; θaux),
which have the highest and lowest classification scores, respectively. The first
term of Laux forces f(·; θaux) to predict the class that shouldn’t belong to, and
the second term makes model produce the lowest score to the ground truth.
Although the training objectives of f(·; θmain) and f(·; θaux) are completely dif-
ferent, the reversed predictions of these two networks are supposed to be iden-
tical. Under such a reciprocal effect, networks can not only alleviate the risk of
model training regressing to vanilla self-training, but also make the relation of
easy-to-confuse categories distinguishable.

2.3 Contrary Prediction Boosts Unlabeled Data Mining

Based on the learning from labeled data, the labor-division of f(·; θmain) and
f(·; θaux) are clear-cut. Concretely, the former focuses on finding out the ground
truth, while the latter pays attention to the targets that tend to be misclassified.
Benefiting from the ability of contrary predictions, we further devise bi-level
constraints to advance the process of unlabeled data mining.
Logit-level Alignment. Given an unlabeled image xu

i , we can acquire pseudo-
label ỹui,aux from f(·; θaux) in a reversed manner, and can also obtain default
pseudo-label ŷui,main from f(·; θmain). Specifically, ỹui,aux and ŷui,main can be de-
rived from:

ỹui,aux = argmax(1− f(xu
i ; θaux)), ŷui,main = argmax(f(xu

i ; θmain)). (5)

So far, we can use the reversed pseudo-label of f(·; θaux) to supervised the predic-
tion of f(·; θmain). Conversely, the default pseudo-label produced by f(·; θmain)
can also be leveraged to regularize f(·; θaux), in the way of minimizing the class
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probability whose reversed version indicates the potential pseudo-label. And this
process can be written as:

Lalign = − 1

Nu

Nu∑
i=1

ỹui,aux log(f(xu
i ; θmain))︸ ︷︷ ︸

Laux→main
align

+ ŷui,main log(1− f(xu
i ; θaux))︸ ︷︷ ︸

Lmain→aux
align

 ,

(6)
where Lalign = Laux→main

align +Lmain→aux
align is the loss calculated on unlabeled data

from a predictive perspective.
Feature-level Contrast. In addition to the alignment of reciprocal predictions,
the information of which category the image shouldn’t belong to can be further
employed for feature separation. Specifically, for any input image xu

i , the predic-
tions of f(·; θmain) and f(·; θaux) are opposite. Therefore, we can maximize or
minimize the feature distance of certain specified categories under the guidance
of contrary predictions. This contrastive process can be formulated as:

Lct =
1

Nu

Nu∑
i=1

1−
< zui,main · Prolŷu

i,main
>

∥zui,main∥2 · ∥Prolŷu
i,main

∥2︸ ︷︷ ︸
intra−class cluster

+
∥zui,main · Prolŷu

i,aux
∥2

∥zui,main∥2 · ∥Prolŷu
i,aux
∥2︸ ︷︷ ︸

contrary class separation

 ,

(7)

ŷui,aux = argmax(f(xu
i ; θaux)), P rol# =

1

N#
l

N#
l∑

i=1

Norm(f(xl
i,#, θmain)), (8)

where zui,main is the normalized feature embeddings produced by f(·; θmain) after
global average pooling. ŷui,aux is the predicted class that xu

i shouldn’t belong to.
Prol# is the feature prototype of class-# that calculated on labeled data. xl

i,#

is the i-th labeled data from class-#, and N#
l is the number of labeled images

in class-#. The contrastive loss Lct is conductive to better clusters and more
distinguishable decision boundary, thereby enhancing the accuracy.

2.4 Training and Inference

Training. The objective function of our method contains supervised loss from
labeled data and unsupervised loss from unlabeled data, defined as:

θtmain, θ
t
aux ← argmin

θt−1
main

,θt−1
aux

Lmain + Laux︸ ︷︷ ︸
Lsup

+Lalign + Lct︸ ︷︷ ︸
Lunsup

, (9)

where θtmain and θtaux are updated from the t−1 step by minimizing overall loss.
Inference. Given an unseen test image, the main network f(·, θmain) is only
used to predict the label with the highest classification score.
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Table 1. 5-fold cross-validation results (mean±std) on the NCT-CRC-HE
dataset, when leveraging 100 and 200 labeled data. The best and second best results
are shown in bold and underline, respectively.

Method NCT-CRC-HE (200 labeled data) NCT-CRC-HE (100 labeled data)
ACC SENS PREC F1 ACC SENS PREC F1

Baseline 78.26±1.67 77.68±0.97 81.46±1.06 74.55±0.82 70.96±1.53 70.94±1.79 75.78±0.62 72.25±0.96
MT [21] 80.87±0.92 80.36±1.21 82.67±0.83 80.45±0.87 76.28±0.94 75.25±0.70 77.68±1.16 76.92±0.61
FixMatch [19] 82.62±0.57 83.96±0.66 83.18±0.71 83.28±0.97 78.29±1.23 78.75±0.94 80.68±0.46 79.80±0.42
SimPLE [6] 83.95±0.97 84.26±0.77 84.03±0.92 84.72±0.32 80.71±0.81 79.98±1.16 81.78±0.80 81.17±0.72
CoMatch [13] 85.72±0.56 86.06±0.73 87.73±0.25 85.58±0.53 82.86±0.79 83.27±0.81 83.47±0.43 83.92±0.55
RAC-MT [5] 86.06±0.55 86.27±0.51 88.11±0.54 86.29±0.30 82.17±0.98 82.91±0.74 82.50±0.62 83.27±0.81
SimMatch [28] 87.68±0.53 86.78±0.79 88.21±0.28 87.37±0.42 83.16±0.71 83.91±0.73 83.21±0.50 84.01±0.36
PEFAT [26] 89.27±0.58 88.92±0.37 89.76±0.89 89.53±0.66 85.77±0.82 84.98±0.79 85.76±0.47 85.15±0.68
ReCo (Ours) 91.51±0.47 90.96±0.56 91.93±0.37 91.22±0.38 87.56±0.73 86.17±0.56 87.57±0.32 86.72±0.35

Table 2. 5-fold cross-validation results (mean±std) on the ISIC 2018 dataset,
when leveraging 5% and 20% labeled data. The best and second best results are shown
in bold and underline, respectively.

Method ISIC 2018 (20% labeled data) ISIC2018 (5% labeled data)
ACC SENS SREC F1 ACC SENS SREC F1

Baseline 88.36±0.97 67.03±0.87 89.10±0.79 47.87±1.62 83.41±0.89 53.27±0.87 84.41±0.75 40.77±1.98
DS3L [4] 89.72±0.91 68.78±0.74 90.06±1.28 58.79±0.86 84.72±0.80 56.47±0.79 88.03±0.59 42.32±0.86
FixMatch [19] 90.14±0.55 69.79±0.68 90.21±0.73 57.83±0.47 85.72±0.46 57.75±0.64 88.38±0.86 44.81±0.87
SRC-MT [14] 90.31±0.73 70.36±0.91 90.39±0.87 57.39±0.72 86.72±0.77 60.15±0.97 88.58±0.74 45.15±0.63
CoMatch [13] 90.78±0.62 71.60±0.82 91.02±0.66 60.39±0.76 87.15±0.71 60.67±0.51 89.06±0.77 46.75±0.69
SimMatch [28] 91.16±0.56 72.77±0.63 91.65±0.71 61.80±0.58 88.30±0.82 61.03±0.74 89.52±0.91 47.18±0.80
RAC-MT [5] 91.37±0.71 73.57±0.90 91.55±0.40 62.10±0.73 88.96±0.50 61.92±0.86 89.71±0.82 47.90±0.57
PEFAT [26] 91.96±0.56 74.43±0.72 91.70±0.38 64.83±0.68 89.92±0.74 62.29±0.53 90.02±0.68 48.86±0.82
ReCo (Ours) 93.25±0.61 76.55±0.89 93.13±0.19 66.07±0.52 91.10±0.60 64.21±0.74 91.31±0.51 50.73±0.38

3 Experiments and Results

3.1 Datasets and Implementation Details

Datasets. We evaluate our method on two public medical image classification
datasets, including NCT-CRC-HE dataset [11] and ISIC 2018 dataset [3]. In
detail, NCT-CRC-HE contains 100,000 colorectal cancer histology patches with
9 categories. Following [26], 100 and 200 labeled data are respectively used to
assess the model performance under an annotation-efficient scenario. ISIC 2018
provides 10,015 skin lesion dermoscopy images, which comprise 7 categories.
Following [26,5], 5% and 20% label percentages are considered. For both datasets,
we conduct 5-fold cross-validation and report the results using evaluation metrics
of Accuracy (ACC), Sensitivity (SENS), Precision (PREC) and F1. The datasets
are split into 70%/10%/20% for training/validation/test in each fold.
Implementation Details. For model training, we adopted DenseNet-121 [7]
as backbone with resized input size of 224 × 224. This baseline setting was
consistent with compared methods [14,5,26]. Our framework was implemented
based on Pytorch [17], using four NVIDIA Gefore RTX 3080Ti GPUs. For a mini-
batch, 16 labeled and 48 unlabeled images were included. Adam optimizer [12]
was employed with an initialized learning rate of 0.001, and the learning rate
would be decayed with a power of 0.9 after each epoch. We trained our model
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Fig. 3. Ablation study conducted on the ISIC 2018 dataset with 20% labels.

for 60 epochs on both classification tasks. Rotation, affine transformation, flip
and cutout were utilized as data augmentation strategies.

3.2 Comparisons and Ablations

We compared our methods with three types of SSL methods, including (1) Mean
teacher-based self-ensembling: relation-driven mean teacher SRC-MT [14]
and reliability-aware contrastive mean teacher RAC-MT [5]. (2) Consistency-
based co-training: weak-to-strong alignment FixMatch [19], instance-semantics
contrast matching SimMatch [28] and memory-smoothed graph regularization
CoMatch [13]. (3) Pseudo-labeling-based: pair-wise pseudo-label exploration
SimPLE [6] and pseudo-loss distribution estimation PEFAT [26].
Results on the NCT-CRC-HE. Table 1 shows the performance compari-
son on the NCT-CRC-HE dataset. As indicated by the results, we can find:
(1) our method consistently outperforms competitors on all metrics, in the sce-
nario of merely providing 100 or 200 annotated data. For instance, compared to
the second-best SSL method PEFAT, our proposed ReCo presents 1.79% and
1.57% gains in terms of accuracy and f1 scores, when leveraging 100 labeled data.
(2) Compared to RAC-MT, a teacher-student-based cooperation framework with
identical learning targets, the proposed strategy of learning distinct while implic-
itly compatible objectives is more beneficial. This is evidenced by higher accuracy
(91.51% vs 86.06%, 5.45%↑) and f1 (91.22% vs 86.29%, 4.93%↑) scores, under
the setting of utilizing 200 annotations. And (3) compared to contrast-based
SimMatch, the improvements further demonstrate the success of our proposed
contrary prediction-guided feature separation.
Results on the ISIC 2018. We also report the performance on the ISIC 2018
dataset. According to Table 2, similar findings can be observed, e.g., ReCo again
achieves the first place when compared to cutting-edge SSL methods. Specifically,
without relying on carefully designed pseudo-label selection standard, ReCo sur-
passes PEFAT by 1.29% and 1.18% in term of accuracy, under 20% and 5% label
percentages, respectively. This result is mainly attributed to the strategy of sep-
arating easy-to-confuse categories, showcasing ReCo’s promising capability.
Ablation Study. We perform ablation studies to verify the effects of logit-level
alignment Lalign and feature-level contrast Lct included in the ReCo. As Fig. 3
shows, both of Lalign and Lct have a positive impact on the model performance.
This indicates the success of contrary predictions for unlabeled data mining. We
also analysis the pseudo-label quality on labeled and unlabeled data (presented
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in the supplementary), and we can find the performance gap produced by ReCo
is much smaller than those produced by other SSL methods.

4 Conclusion

This paper introduces a novel method ReCo for semi-supervised medical image
classification. ReCo differs from existing SSL methods as ReCo learns from two
distinct while potentially consistent training objectives. Thanks to this opera-
tion, model discrepancy is retained and the relation of easy-to-confuse categories
are legible, based on the guidance of contrary predictions. Also, sufficient exper-
iments on two datasets validate the effectiveness of ReCo, which consistently
achieves the first place on all evaluation metrics.
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