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Abstract. Image monitoring and guidance during medical examina-
tions can aid both diagnosis and treatment. However, the sampling fre-
quency is often too low, which creates a need to estimate the missing
images. We present a probabilistic motion model for sequential medical
images, with the ability to both estimate motion between acquired im-
ages and forecast the motion ahead of time. The core is a low-dimensional
temporal process based on a linear Gaussian state-space model with ana-
lytically tractable solutions for forecasting, simulation, and imputation of
missing samples. The results, from two experiments on publicly available
cardiac datasets, show reliable motion estimates and an improved fore-
casting performance using patient-specific adaptation by online learning.

Keywords: Image registration · Online learning · Dynamic probabilistic
modeling.

1 Introduction

Sequential imaging during medical interventions, so-called intra-interventional
imaging, appears in several medical examinations. In cardiology, diagnostic de-
cisions may be supported by cardiac ultrasound or cardiac MRI by acquiring
images of the heart over one or several cardiac cycles [1]. In MR-guided radio-
therapy [25], 2D cine MRI is used to monitor moving tumors and organs at risk
during ongoing treatment sessions. This enables controlling and adapting the
treatment beam [15].

A common desire is to identify the anatomical motion from a static refer-
ence image to each subsequent image in the temporal sequence. This enables
transferring segmentations (e.g. organs) identified in the reference image and
estimating their location in the sequence. Finding the corresponding deforma-
tion field is the main goal of motion estimation. Of particular interest are dif-
feomorphic deformations, which are topology-preserving and ensure one-to-one
mapping between the pixels/voxels in the two images. Examples of conventional
diffeomorphic image registration methods are Large Deformation Diffeomorphic



2 N. Gunnarsson et al.

Metric Mapping [6] and symmetric normalization [4]. Recently, deep learning
image registration methods [17, 30] have shown fast and accurate performance
in motion detection and organ tracking by removing the iterative optimization
procedure from inference time and solving tasks in nearly real-time. However,
image registration methods do not consider the sequential nature of an image
sequence and estimate the motion using one image pair at a time.

With sequential images, an interesting research question is to model the
temporal sequence from the data. We refer to this as motion modeling – a model
with the possibility of estimating the motion at the previous, current, and future
times. We present a diffeomorphic motion model suitable for intra-interventional
medical image sequences. For this, we define and model a temporal process in a
low-dimensional latent space with the possibility to impute and forecast missing
samples in the sequence. Furthermore, our model is the first, to the best of our
knowledge, to support online learning of the temporal model which makes it
suitable for real-time scenarios.

2 Related work

Motion modeling and real-time analysis of intra-interventional medical images is
a relatively new research direction. The literature shows that the most common
motion to analyze is cyclic patterns like cardiac or respiratory motion [8, 24].
A general approach is to embed the image data into a lower dimensional space
and model the temporal process in this domain. Romaguera et al. [28] present a
forecasting approach where they suggest a convolutional LSTM to extrapolate
the temporal process in the latent dimension. Extension of their work includes a
forecasting 4D motion (3D + time) given 2D intra-interventional images using
a probabilistic setting [27]. Krebs et al. [16] proposed a more general probabilis-
tic motion model. Their model relies on a conditional variational autoencoder,
where they approximate the posterior distribution in the latent dimension using
a temporal convolutional neural network. During training, they minimize the
Kullback–Leibler divergence between their approximate posterior distribution
and a known Gaussian process prior. Missing samples in the sequence are then
replaced with samples from this prior. Their work shows reliable diffeomorphic
estimates of the displacement field with imputing and forecasting possibility.
However, they are limited to image sequences of fixed length. To overcome this,
Gunnarsson et al. [12] modeled the low dimensional temporal process using a
linear Gaussian state space model, i.e., a first-order Markov process. The work
we present here is a further development of this model, including support for
online learning and architectural improvements.

Previous work on online learning and adaptive modeling from lower dimen-
sional respiratory signals have shown promising results in tumor motion predic-
tions [13, 19, 29]. In those works, the low-dimension temporal signal consists of
reference markers, respiratory motion traces, or centroid position extractions,
and the motion estimation is rigidly and limited to a specific region, like the
tumor. We present an adaptive motion modeling procedure that produces the
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full 2D DVF over a whole 2D image. With this additional motion information,
one can enable online adaptation of the treatment procedure, such as real-time
plan adaptation in radiation therapy [18], where also the motion of e.g., risk
organs can be taken into account.

3 Background - Linear Gaussian state space model

A linear Gaussian state space model (LG-SSM) is a linear representation of a
state space model. The model defines a first-order Markov process for a dynamic
state variable zt ∈ Rp followed by a transmission operation between the state
variable and an observed variable xt ∈ Rq, i.e.

zt|zt−1 ∼ N (zt|Azt−1, Q), xt|zt ∼ N (xt|Czt, R), z0 ∼ N (z0|µ0, P0), (1)

where A ∈ Rp×p and C ∈ Rq×p denote the state and observation matrix, respec-
tively, Q ∈ Rp×p and R ∈ Rq×q denote covariance matrices for uncertainties and
µ0, P0 is the initial values of the state process. Even though LG-SSM defines
the process as a first-order Markov process, a state variable with a dimension
higher than one yields various possibilities of motion types, including oscillatory
motions [3]. Besides that, LG-SSMs are beneficial since the state prediction,
zt+k | zt, and smoothing, zt−k | zt, k > 0, are analytically tractable using
i.e. Kalman filtering [14] and RTS smoothing [26]. Lately, parameter-estimated
LG-SSM has shown impressive results in long-range sequence modeling tasks,
outperforming recent methods like RNNs, CNNs, and Transformers [11].

To reduce the computational complexity of high-dimensional sequences y =
[y1, . . . , yT ], like videos, Fraccaro et al. [10] proposed a probabilistic dynami-
cal model that embeds the sequence into a lower-dimensional space where it is
represented as an LG-SSM.

4 Method

Given the data {(y0,y)(i)}ni=1 of static reference images y0 and time sequences
y = [y1, . . . yT ] our goal is to first model the spatiotemporal changes and then
use this model to reconstruct and generate samples at other times. For this,
we explain the spatiotemporal changes as the spatial transformation φt from
the static reference image to each time step t in the sequence such that yt ≈
y0 ◦ φt [12]. To include spatial information in the transformation, like contour
information and description of shapes, but still limit the temporal process to
the most significant temporal changes, we estimate φt based on the temporal
process and spatial information s given the static reference image y0, i.e,

φt = gθg(xt, s), s = fθs(y0), (2)

where xt is a low-dimensional variable at time t. By doing this, we can separate
the temporal changes and characteristic features from the images within the
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sequence. Since the image process may be incomplete due to e.g. missing samples,
we define the spatial information based on the static reference image y0 only.
The spatial transformation φt is a function of xt and s (and s is a function of
y0), we can parameterize pθ(y | y0,x) =

∏T
t=1 pθ(yt | y0, xt) with a generative

network with parameters θ = {θg, θs} and model the likelihood pθ(yt | y0, xt) =
pθ(yt | y0, φt) as any computable continuous distribution in θ. Furthermore, to
estimate missing samples in the sequence we model the temporal process in the
lower dimension using an LG-SSM, driven by the state variables zt and with
parameters γ = {A,Q,C,R, µ0, Σ0}. Finally, given an approximate posterior
q(x,z | y0,y) = qϕ(x | y0,y)pγ(z | x) an evidence lower bound (ELBO) can be
derived as

log p(y | y0) ≥ Eqϕ(x|y0,y)

[
log

pθ(y | y0,φ)
qϕ(x | y0,y)

+ Epγ(z|x)

[
log

pγ(x, z)

pγ(z | x)

]]
, (3)

where pγ(x, z) and pγ(z | x) are both analytical tractable using Kalman filtering
and RTS smoothing. During the training process we maximize the approximate
ELBO by sampling x̃ ∼ qϕ(x | y0,y) and z̃ ∼ pγ(z | x̃) and update the param-
eters of the inference network (ϕ), the LG-SSM (γ) and the generative network
(θ) simultaneously. For a complete derivation of the ELBO, we refer to sup-
plemental material. A schematic overview of our probabilistic model given the
observed variables y, y0 and unobserved variables x, z is shown in Fig. 1.
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Fig. 1. An observation yt is downsampled to the temporal process (a). The spatial
transformation is generated given y0 and the low-dimensional motion model (b). (c)
visualizes the entire model.

4.1 Online learning

To adapt the model for individual patient motion, we propose a fast online learn-
ing procedure that operates on the motion model only. This means we only focus
on the LG-SSM parameters γ and keep the inference and generative network pa-
rameters {ϕ, θ} fixed (shown in Fig. 2). To update the LG-SSM parameters, we
iteratively maximize the exact marginal log-likelihood for the N most recent
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samples of the temporal process at each sampling time t, i.e,

max
γt

log pγt(xt−N :t) = max
γt

log
t∏

k=t−N

pγt(xk | xk−1). (4)

This approach is based on the moving horizon estimation technique [20], which
is a well-established method for state estimation in real-time applications. We
calculate the marginal log-likelihood using the Kalman filter and update the
parameters using gradient-based optimization methods. The algorithm for our
proposed online learning procedure is shown in Algorithm 1.

Algorithm 1 Online training
Require: γ0, ϕ, θ, y0, N

s← fϕ(y0)
x← {}
while yt arrives do

x̃t ∼ qθ(xt | y0, yt)
x← (x \ x̃t−N ) ∪ x̃t ▷ Data collection
pγt−1(x)← Kalman Filter(x)
L ← log pγt−1(x) ▷ Equation (4)
γt ← update(γt−1,∇γt−1L)
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y

qϕ(xt | y0, yt)
µenc
t

Σenc
t

φt = gθ(xt, s)

p θ
(y

t
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0
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Fig. 2. During online-learning we fix the parameters of the encoder (ϕ) and the decoder
(θ), and only update the parameters of the LG-SSM (γ).

4.2 Implementation details

In our implementation, the inference network and the spatial feature extraction
share a similar network architecture. We downsample the data using convo-
lutional layers with filters [32, 32, 32, 16], extract the spatial features at each
level, and estimate the mean and covariance of xt at the bottom level. For
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the LG-SSM, we use eight dimensions for xt (p = 8) and 16 for the state-
variable zt (q = 16) and estimate all model parameters. In the generative net-
work, we use attention gates [22] to focus the temporal changes on the spatial
features of the reference image at each resolution and use the same number
of filters as in the inference network. To ensure diffeomorphic estimation of
φt we consider the output as the stationary velocity field vt and first smooth
it using a Gaussian filter [17] and then compute the transformation numeri-
cally using four scaling-and-squaring layers [2], a proven approach to obtain
diffeomorphic registrations [9, 17]. Our implementation is publicly available at
https://github.com/ngunnar/2D_motion_model and for a more detailed de-
scription, we refer to supplemental material.

5 Experiments

For experiments, we evaluate our model on two publicly available datasets: i)
single-cycle cine-MRI sequences from the Automatic Cardiac Diagnosis Chal-
lenge (ACDC) [7], and ii) longer sequences of cardiac ultrasound images from
the EchoNet-Dynamic database [23]. On the EchoNet-Dynamic dataset, we per-
form online learning with a moving horizon of N = 75. This is not suitable for the
ACDC dataset as the sequences are too short. Instead, on the ACDC dataset
we evaluate the capability to reconstruct the sequence from sparsely sampled
sequences where we only observe a subset of the images in the sequence.

Both datasets are segmented manually at the end-systole and the end-diastole
time points. We use the first time point as our static reference image and calcu-
late the Dice score coefficients (DSC) and the 95%-th Hausdorff distance (HD95)
between the other manually segmented frame and our estimation at the given
point for evaluation. We compare our registration accuracy against no estimated
motion and two well-established image registration methods: symmetric normal-
ization (SyN) [4] and elastic registration [21], both using the ANTs software [5].
Both these methods have been used as a comparison versus state-of-the-art deep
learning-based methods, where especially SyN has excelled [17]. Moreover, for
online learning, we leave a horizon of H = 50 samples for each sequence and
calculate both the log-likelihood of the unseen sequence xT :T+H and the RMSE
between 50 samples from the forecasting distribution and the true latent values.
Furthermore, we also calculated the Dice score between the samples 25 steps
ahead and the estimated segmentation given the entire sequence. In Table 1, we
present the overall result from both datasets. All models produce diffeomorphic
deformations (positive Jacobian determinants) and this metric is omitted from
the table. The execution times for motion estimation with and without online
learning are approximately 15 ms and 75 ms on a single CPU, respectively.

ACDC: In the ACDC experiment, which consists of 100 patients for training
and 50 for testing, we resample the images with spacing 1.5× 1.5 mm and crop
it to 128 × 128 pixels with the ventricles in the center. The original sequences
are in 3D with limited resolution in one orientation. Therefore we only consider

https://github.com/ngunnar/2D_motion_model
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t = 5 t = 10 t = 15 t = 20 t = 25
obs obs LV cm2

yt y0 ◦ φt GT All 5th 10th

Fig. 3. Overlay of true sequence (magenta), and φt = 0, on top, and our estimation
given every 10th sample, on bottom (green). On the right, the distribution of the left
ventricle area for 20 latent samples under three scenarios: all time points observed,
every 5th, and every 10th. The figure is colored in the online version.

the 2D motion in the other two orientations. For training, we split the volume
into slices and removed slices with no annotations, resulting in a training set
of 840 sequences. In the evaluation part, we use the middle slice of the volume
in the test dataset to ensure connected segmented regions with no mismatch
due to out-of-plane motions. For consistency regarding the sequence length, we
resample each sequence to 35 samples using bilinear interpolation. During the
training phase, we augment the data using random rotation, flip, and transla-
tion of the whole sequences. For evaluation, we use the segmented regions of
the right ventricle (RV), the left ventricle myocardium (LV-Myo), and the left
ventricle blood pool (LV-BP). Fig. 3 shows the result from where we reconstruct
the entire sequence using only every 10th sample as input to our model.

EchoNet-Dynamic: The EchoNet-Dynamic dataset includes 10 023 unique car-
diac ultrasound videos of various lengths with left ventricle segmentations (LV).
We split this data into a training set of 9 540 videos and 483 videos for testing.
Furthermore, during training, for each epoch, we randomly selected a sequence
of 50 frames from each video. Fig. 4 shows the result of online training when we
forecast the motion 50 time-steps ahead.

6 Discussion and conclusion

In this work, we have presented a motion model for intra-interventional medical
images. We define the motion model in a low-dimensional space as a probabilistic
LG-SSM with analytical solutions to the inference problem, like imputation for
undersampled data (smoothing) and forecasting into the future (prediction). In
the first experiment, on the ACDC dataset, we show a marginally improved ac-
curacy compared to well-established diffeomorphic image registration methods,
even in cases where we subsample the data and retain only 10% of the original
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tT+1 = 176 t = 188 t = 201 t = 213 t = 225 Dice

yt y0 ◦ φt t | t t | tT (forecast) Pre-trained vs. Online

Fig. 4. Overlay between true sequence (magenta) and forecasted sequence (green) using
pre-trained model, on top, and online learning, on bottom. To the right, Dice score
distribution of the left ventricle from 20 forecasted samples and the estimated region
given the entire sequence. The figure is colored in the online version.

Table 1. Overall results from the two datasets.

ACDC EchoNet
DSC HD95[mm] DSC HD951

RV LV-Myo LV-BP RV LV-MYO LV-BP LV LV

None 0.70 0.52 0.66 9.11 8.46 11.06 0.74 8.37
Elastic 0.77 0.72 0.81 6.81 5.88 6.33 0.87 5.94
SyN 0.79 0.72 0.86 5.88 5.22 4.69 0.88 4.68
Our 0.80 0.82 0.84 5.35 4.34 5.18 0.86 4.92
Our 5th 0.80 0.81 0.84 5.28 4.44 5.27 − −
Our 10th 0.79 0.80 0.83 5.51 4.63 5.57 − −

EchoNet Forecasting
log pγ(xT :T+H) RMSE (xT :T+H) DSC (φT+25|T )

Pre-trained −10.5 7.04 0.81
Online −6.3 5.54 0.85

1 Spacing is not specified in the dataset. The metric is given in pixels.



Online learning in motion modeling for intra-interventional image sequences 9

sequence. Our model, operating in a lower and more manageable latent space,
shows similar accuracy to recent work [16]. However, a direct comparison is not
feasible since both the code and some of the data are not publicly available. In
the second experiment, on the EchoNet-dynamics dataset, we show the capac-
ity of the model to adapt to new, patient-specific data by using online learning
and updating the weights in the low-dimensional LG-SSM. The online learned
model shows forecasting improvements in both similarities of the latent process
with higher likelihood given the true process and lower distance between the
samples compared to the pre-trained model as well as the calculated Dice score
for predicted samples. The registration accuracy in this experiment is slightly
worse than the conventional image registration methods, and can hopefully be
improved by refining the hyperparameter settings or data preprocessing. How-
ever, in contrast to conventional image registration methods, our model supports
time series interpolation/extrapolation. Finally, we believe patient-specific adap-
tation and reliable forecasting predictions are necessary for longer sequences to
support advanced procedures, like real-time adaptation in MR-guided radiother-
apy. Other topics for further investigation include relating the uncertainty in the
latent temporal process to the uncertainty in the estimated displacement field
and observing how each component of the latent space contributes to the actual
motion.
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