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Abstract. High myopia significantly increases the risk of irreversible vi-
sion loss. Traditional perimetry-based visual field (VF) assessment pro-
vides systematic quantification of visual loss but it is subjective and
time-consuming. Consequently, machine learning models utilizing fun-
dus photographs to estimate VF have emerged as promising alterna-
tives. However, due to the high variability and the limited availability
of VF data, existing VF estimation models fail to generalize well, par-
ticularly when facing out-of-distribution data across diverse centers and
populations. To tackle this challenge, we propose a novel, parameter-
efficient framework to enhance the generalized robustness of VF esti-
mation on both in- and out-of-distribution data. Specifically, we design
a Refinement-by-Denoising (RED) module for feature refinement and
adaptation from pretrained vision models, aiming to learn high-entropy
feature representations and to mitigate the domain gap effectively and
efficiently. Through independent validation on two distinct real-world
datasets from separate centers, our method significantly outperforms ex-
isting approaches in RMSE, MAE and correlation coefficient for both
internal and external validation. Our proposed framework benefits both
in- and out-of-distribution VF estimation, offering significant clinical im-
plications and potential utility in real-world ophthalmic practices.

Keywords: Vision loss estimation · Visual field · Fundus photograph ·
Feature learning · Denoising · Generalization.

1 Introduction

High myopia (HM) is a significant risk factor for irreversible vision impairment,
primarily due to its association with several ocular conditions, such as myopic
maculopathy and retinal detachment [19]. The assessment of visual field (VF)
sensitivity is crucial for evaluating the risk and extent of vision loss, as it pro-
vides a systematic quantification of visual function [21]. However, traditional
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VF assessment using perimetry is notably subjective and time-consuming, as it
highly requires patients’ compliance throughout the test [14].

Unlike VF assessment, fundus photography as an imaging technique for reti-
nal morphology, not only offers an objective measurement of the retinal struc-
ture, but also emerged as a valuable alternative for evaluating the retinal func-
tion, based on the theory of “structure-function relationship” [27]. Recent ad-
vances deep learning-based methods [13,7,29] have shown potential in leveraging
fundus photos for accurate vision loss estimation, even point-wise VF estima-
tion [29]. These methods provide more objective and efficient alternatives to
assess the risk and extent of vision loss.

Despite the potential of deep learning-based VF estimations, their practi-
cal implementation in clinical settings is compromised by two primary chal-
lenges associated with VF data. Firstly, the inherent high variability within
VF data—largely caused by its subjective assessment [26]—and the variation
in imaging devices and protocols across diverse centers and populations, will
introduce unforeseen shifts in data distribution. This phenomenon, known as
out-of-distribution (OOD) data, hinders the models’ ability to generalize across
datasets, presenting a significant challenge to the robustness and reliability of
VF estimation. Secondly, the limited available VF data—mainly due to the cost
and difficulty of acquisition [9]—further poses a significant barrier to the devel-
opment of a robust deep learning model for VF estimation.

To tackle these challenges, our study proposes a novel parameter-efficient
framework to enhance the generalized robustness of VF estimation on both in-
distribution and OOD data. Specifically, we design a Refinement-by-Denoising
(RED) module for feature refinement and adaptation from pretrained vision
models, aiming to mitigate noises originating from the domain gap and learn
high-entropy feature representations for VF estimation.

In brief, our method utilizes pretrained vision models for initial feature ex-
traction from fundus photos. While these models are originally trained on natural
images, their application to fundus photos introduces a domain gap and leads to
corrupted raw features, mainly due to the differences between the natural image
and fundus image domains. Therefore, to mitigate this domain gap, RED refines
the raw features by unsupervised denoising, which not only removes the noise
but also encourages high-entropy representations, facilitating the downstream
VF estimation. As a result, our method significantly outperforms existing ap-
proaches in the validation of two distinct real-world datasets.

Our contributions are summarized as follows:

– We propose a novel parameter-efficiency framework, RED, for robust VF
estimation from fundus photos. RED is designed for feature refinement and
adaptation from pretrained vision models, and could learn high-entropy fea-
ture representations and mitigate the domain gap effectively.

– Our proposed RED outperforms existing models in RMSE, MAE and cor-
relation coefficient for both internal and external validation on two distinct
real-world datasets, offering significant clinical implications and potential
utility in future ophthalmic practices.
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Fig. 1: Overview of the proposed method.

– This is the first work to systematically assess the robustness of VF estimation
models across datasets from different centers and populations.

2 Problem Formulation

Given a training set D = {(Xi,yi)}Ni=1, where Xi ∈ RH×W×C denotes the fun-
dus photo, yi ∈ RM denotes its corresponded vectorized VF. The objective is to
train a model on the given D, which learns a mapping from the fundus photo to
the target VF. The challenges mainly come from the limited training set. The
training set is in a limited size and the fundus photo is in a high-dimensional
space, therefore learning the model is challenging. Besides, conventional regres-
sion fails to predict VF accurately [29], due to its inability to learn high entropy
feature representations [31]. Furthermore, we aim to learn a robust model that
is generalized to both in- and out-of-distribution data.

3 Proposed Method

3.1 Overview

As illustrated in Fig. 1, we present an overview of the proposed method. Specifi-
cally, we address this problem from a feature refinement perspective. Our meth-
ods consist of three components: feature extraction, feature denoising and re-
gression. For feature extraction, we utilize pretrained vision models to extract
the feature vectors from the fundus photo, thereby significantly reducing its di-
mensionality. However, the pretrained vision models are generally trained in the
natural image domain; therefore, there is a domain gap between the natural
image and the fundus photo domain. To address this problem, we propose a
refinement by denoising (RED) module, which removes the noise in features and
benefits the following regression process. Thereafter, the final regression learns
to predict VF based on the refined features.

3.2 Feature Refinement by Denoising (RED)

Given a pretrained vision model FΘ(·) : RH×W×C → RK where Θ denotes its
parameters, for a fundus photo X, its feature vector can be extracted as follows:

z = FΘ(X), (1)
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Table 1: Main results. † denotes fine-tuning the feature extractor.
Trainable Validation set Test set

Method Params (MB) RMSE(↓) MAE(↓) PCC(↑) RMSE(↓) MAE(↓) PCC(↑)
Classification 1.04 4.96 3.81 0.32 3.17 2.39 0.19
EMD [12] 1.04 4.94 3.76 0.45 3.19 2.38 0.32
SOFT [1] 1.04 4.95 3.80 0.33 3.16 2.39 0.20
CORAL [2] 1.02 4.78 3.68 0.41 3.14 2.43 0.30
OLL [3] 1.04 4.57 3.45 0.55 3.08 2.37 0.40
VF-HM [29] 11.02† 4.69 3.61 0.49 3.32 2.58 0.22
Regression 0.03 5.09 4.00 0.44 3.99 3.44 -0.08
Regression + OE [31] 0.53 4.36 3.25 0.60 3.08 2.39 0.31
Regression + RED 0.53 4.21 3.13 0.63 2.92 2.19 0.53

where z ∈ RK denotes the extracted feature vector.
However, the pretrained vision models are generally trained in the natural

image domain, and our input modality is the fundus photo, which is captured by
the specialized digital camera. Although it is in RGB mode, there is a domain
gap between the natural image domain and fundus photo domain. Following [15],
we model the domain gap by assuming that each feature vector z is corrupted
by additive white Gaussian noise (AWGN), which is formulated as follows:

z = z⋆ + n, (2)

where z⋆ ∈ RK denotes the underlying cleaned signal and n ∈ RK denotes an
i.i.d. Gaussian noise, i.e., nk ∼ N (0, σ2).

Thereafter, we propose a Refinement by Denoising (RED) module for miti-
gating this gap by denoising. Specifically, we parameterize RED by an encoder
hθ(·) : RK → RK , which denoises the features by ẑ = hθ(z). However, the
ground truth z⋆ is not available in practice, therefore optimizing hθ(·) with the
mean squared error (MSE) is impossible. And the MSE is defined as follows:

MSE(hθ(z)) =
1

K
∥z⋆ − ẑ∥2 =

1

K
∥z⋆ − hθ(z)∥2, (3)

where ∥ · ∥ denotes ℓ2 norm.
Instead, following Stein’s unbiased risk estimator (SURE) [25], we can derive

the unbiased estimation of the above MSE in Eq.(3), which only requires noisy
feature z. And the SURE is formulated as follows:

SURE(hθ(z)) =
1

K
∥z − hθ(z)∥2 − σ2 +

2σ2

K

K∑
k=1

∂hθ(z)k
∂zk︸ ︷︷ ︸

divergence

. (4)

Theorem 1. ([25]) The random variable SURE(hθ(z)) is an unbiased estimator
of MSE(hθ(z)), that is, En{MSE(hθ(z))} = En{SURE(hθ(z))},
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Table 2: Results of abnormal cases on Test set.
Category GHT: Outside Normal Limits PSD: P ≤ 0.5%

Method RMSE(↓) MAE(↓) PCC(↑) RMSE(↓) MAE(↓) PCC(↑)
Classification 4.32 3.83 0.28 5.53 3.06 0.13
EMD [12] 4.55 3.57 0.49 5.57 3.05 0.32
SOFT [1] 4.33 3.40 0.27 5.51 3.03 0.15
CORAL [2] 4.11 3.25 0.45 5.45 3.01 0.23
OLL [3] 4.10 3.21 0.58 5.40 2.94 0.34
VF-HM [29] 4.25 3.38 0.17 5.54 3.18 0.12
Regression 4.38 3.67 -0.23 5.52 3.70 0.38
Regression + OE [31] 4.24 3.31 0.58 5.40 2.88 0.31
Regression + RED 3.95 3.05 0.62 5.15 2.72 0.47

where En{·} represents the expectation with respect to n.
For fast approximating the last divergence term in Eq.(4), we follow the

MC-SURE [22], which utilizes Monte Carlo method [18] in approximation.

Theorem 2. ([22]) Let b ∼ N (0, σ2I) ∈ RK be a zero-mean i.i.d. normal vec-
tor, then,

K∑
k=1

∂hθ(z)k
∂zk

= lim
ϵ→0

Eb

{
bT

(hθ(z + ϵb)− hθ(z)

ϵ

)}
, (5)

where ϵ denotes a fixed small positive scalar, and (·)T denotes the transpose
operator.

Based on the above Theorem 2, the last divergence term in Eq.(4) can be
approximated as follows [22,24]:

1

K

K∑
k=1

∂hθ(z)k
∂zk

≈ 1

ϵK
bT

(
hθ(z + ϵb)− hθ(z)

)
. (6)

Therefore, the training objective function of hθ(·) is formulated as follows:

MC-SURE(hθ(z)) =
1

K
∥z − hθ(z)∥2 − σ2 +

2σ2

ϵK
bT

(
hθ(z + ϵb)− hθ(z)

)
. (7)

Finally, we utilize a regression module fw(·) : RK → RM for predicting VF
based on the denoised features, that is, ŷ = fw(ẑ). And the overall training
objective is summarized as follows:

L =
1

N

N∑
i=1

(
1

M
∥ŷi − yi∥2 + λ · MC-SURE(hθ(z

i))

)
, (8)

where λ ∈ R+ is a trade-off hyper-parameter.
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Fig. 2: Visualization of predictions of a case in the Test set.

3.3 Analysis of the role of noise

To understand the role of noise in features, we conduct analyses on both noisy
features z and denoised features ẑ, respectively. For simplicity, we consider a
linear regression model fw(·) : RK → R for predicting a single VF point based
on a given feature; and without loss of generality, we ignore its bias term, and
it is defined as:

fw(z) = wTz, (9)

where w ∈ RK denotes its weight parameter.
Recall the noise formulation in Eq.(2) for features z, and consider the training

objective of fw(·) is a squared error, then it can be expressed as follows:

(fw(z)− y)2 =
(
wT (z⋆ + n)− y

)2
=

(
(wTz⋆ − y) +wTn

)2
= (wTz⋆ − y)2 + ∥wTn∥2

= (wTz⋆ − y)2 + Kσ2∥w∥2︸ ︷︷ ︸
weight decay

,
(10)

therefore, the noise in noisy features z can be interpreted as a regularization [4],
i.e., a constant weight decay.

Furthermore, we investigate the effect of denoised feature ẑ. Inspired by
[23,5,6,30], we decompose it as follows:

ẑ = z⋆ + e, (11)

where e denotes the residual error, which is composed of the lost signals of z⋆

and the remaining noise from n.
Similarly, the training objective can be expanded as follows:

(fw(ẑ)− y)2 = (wTz⋆ − y)2 + cos2(e,w)∥e∥2∥w∥2︸ ︷︷ ︸
weight decay

, (12)

where the error in denoised features ẑ also performs as a regularization, yet, an
adaptive weight decay depending on the residual error e, as well as the quality
of the denoising.



Generalized Robust Fundus Photo-based Vision Loss Estimation for HM 7

Table 3: Alternative denoising kernels.
Validation set Test set

Method RMSE(↓) MAE(↓) PCC(↑) RMSE(↓) MAE(↓) PCC(↑)
Regression 5.09 4.00 0.44 3.99 3.44 -0.08
+ Mean (k=2) 5.01 3.93 0.14 3.65 3.05 -0.10
+ Mean (k=3) 5.00 3.93 0.00 3.64 3.03 -0.11
+ Mean (k=4) 5.02 3.94 -0.05 3.63 3.03 -0.11
+ Median (k=3) 4.98 3.89 0.15 3.65 3.05 -0.01
+ Median (k=5) 5.03 3.94 -0.04 3.64 3.03 -0.12
+ Median (k=7) 5.07 3.99 -0.20 3.69 3.09 -0.14
+ RED 4.21 3.13 0.63 2.92 2.19 0.53

Table 4: Alternative feature extractors.
Validation set Test set

Method RMSE(↓) MAE(↓) PCC(↑) RMSE(↓) MAE(↓) PCC(↑)
ResNet-18 [11] 5.09 4.00 0.44 3.99 3.44 -0.08
+ RED 4.21 3.13 0.63 2.92 2.19 0.53
ConvNeXt-T [17] 4.91 3.82 0.53 3.90 3.31 -0.08
+ RED 4.39 3.26 0.57 3.01 2.27 0.49
ViT-B-16 [10] 4.93 3.84 0.31 4.10 3.58 0.06
+ RED 4.42 3.30 0.59 3.05 2.38 0.35
Swin-T [16] 4.85 3.75 0.46 4.18 3.64 -0.12
+ RED 4.12 3.03 0.63 3.56 2.99 0.38

4 Experiments

4.1 Experimental Data

The experimental data (including training, validation, and test set) comes from
the HM population. Specifically, the training and validation sets are from the
same clinic site, while the test set is from another clinic site, there are no over-
lapping patients among them. The training set includes 254 eyes, the validation
set includes 45 eyes, and the test set consists of 92 eyes. Besides, the fundus
photo is captured in RGB colorful mode, the VF is measured in the 24-2 mode
with 52 effective points.

4.2 Experimental Setup

Data pre-processing. We choose the left eye pattern as our base [29], while
we horizontally flip these data that are not in the left eye pattern.

Baselines. We mainly compare our method to classification and regression
baselines, which utilize extracted features. Specifically, classification baselines
including conventional and ordinal classifications, including EMD [12], SOFT [1],
CORAL [2] and OLL [3]. Besides, we also compare our method to VF-HM [29],
which is based on CORAL and auxiliary learning. Additionally, we consider the
regression regularized by ordinal entropy (OE) [31].

Evaluation methods. Following [20,32,28,7,8,29], we utilize two metrics:
RMSE and MAE for quantitative evaluation. In addition, we utilize the Pearson
correlation coefficient (PCC) to measure the linear relationship between the
predicted and ground-truth VF. For qualitative evaluation, we visualize some
representative predictions from the test set.

Implementation details. We follow the official implementations for all
baselines. And for a fair comparison, we utilize the ImageNet-1K pretrained
ResNet-18 [11] as the feature extractor. For the encoder hθ(·) in RED and OE,
we utilize a ReLU-based MLP with only one hidden layer6.

4.3 Experimental Results

Main results. Table 1 reports the results of different methods on both valida-
tion and test sets. In general, RED outperforms others on both validation and
6 Our code is available at https://github.com/yanzipei/VF_RED

https://github.com/yanzipei/VF_RED
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Fig. 3: (a) L2 Norm of the weight of the regression layer (b) Entropy of feature
space (c) MC-SURE loss during training, and (d) RMSE and MAE metrics
corresponding to different λ.

test sets. Specifically, for classifications, we observe that OLL achieves better
performance and CORAL is the runner-up. Besides, VF-HM outperforms OLL
on the validation set but is worse on the test set, indicating fine-tuning overfits
and poorly generalizes to unseen OOD test data. For regressions, we observe that
RED can improve the generalization on both in- and out-of-distribution data,
according to the significant improvement from RMSE, MAE and PCC on both
validation and test sets; meanwhile, OE mainly improves the generalization of
in-distribution data.

Results on abnormal cases. Table 2 reports the results of abnormal cases
on the Test set. Abnormal cases are identified based on Glaucoma Hemifield
Test (GHT, outside normal limited) and Pattern Standard Deviation (PSD,
P ≤ 0.5%). Similar to the main results, RED achieves better performance than
others in abnormal cases, suggesting the RED’s ability to identify and predict
abnormal cases more accurately.

Visualization of predictions. Fig. 2 visualizes predictions from different
models for a representative case on test data. Specifically, conventional regression
fails to predict vision loss, while RED predicts local vision loss more precisely.

4.4 Ablation Study

Apart from the analysis in Sec 3.3, we conduct experiments to analyze the ef-
fectiveness of the proposed RED.

Effectiveness of RED. We compared RED to different denoising kernels
including mean and median kernels. In Table 3, we observe that RED is more
effective than others. Besides, in Fig. 3(a) and (b) verify our method works
as a weight decay regularized to smaller weights, and encourages to learn high
entropy feature representations.

Impact of Hyper-parameter. As shown in Fig. 3(c), we explore the impact
of different λ for MC-SURE loss; besides, according to the result in Fig. 3(d),
we observe that λ = 1.0 is a good trade-off parameter.

Alternative feature extractors. We also explore alternative feature ex-
tractors, such as ConvNeXT [17], ViT [10], and Swin [16]. In Table 4, we observe
that RED has broad applicability to different feature extractors.



Generalized Robust Fundus Photo-based Vision Loss Estimation for HM 9

5 Conclusion

In this work, we propose a parameter-efficiency framework: RED for robust
VF estimation from fundus photos and validate it on two distinct real-world
datasets from separate centers. RED significantly outperforms existing methods
in both internal and external validation, suggesting a more robust and reliable
VF estimation approach. Our work benefits not only in-distribution but also out-
of-distribution data, highlighting significant clinical implications and potential
utility in future ophthalmic practices. A notable limitation of our work is the
demographic homogeneity of the datasets used, which consisted exclusively of
patients with non-glaucomatous HM from the same ethnicity, although they
were collected from diverse sites using diverse imaging devices and protocols.
This may affect the applicability of our model to a broader population with
diverse demographics (e.g., ethnicity, ocular diseases). Further study is required
to evaluate the influence of demographic background on VF estimation.
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