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Abstract. During a fetal ultrasound scan, a sonographer will zoom in
and zoom out as they attempt to get clearer images of the anatomical
structures of interest. This paper explores how to use this zoom informa-
tion which is an under-utilised piece of information that is extractable
from fetal ultrasound images. We explore associating zooming patterns
to specific structures. The presence of such patterns would indicate that
each individual anatomical structure has a unique signature associated
with it, thereby allowing for classification of fetal ultrasound clips with-
out directly reading the actual fetal ultrasound images in a convolutional
neural network.
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1 Introduction

Magnifying an image to get a better view of a structure is part and parcel of
the fetal ultrasound (US) scanning process. This fact is especially true when at-
tempting to capture biometric measurements of interest, such as the crown rump
length (CRL) and the nuchal translucency (NT). During a fetal ultrasound scan,
a sonographer will zoom in and zoom out as they attempt to get clearer images
of the anatomical structures of interest. In this work, we discuss how to use this
zoom information which is an under-utilised piece of information. Zoom informa-
tion is extractable from fetal ultrasound frames. We explore associating zooming
patterns to specific structures. The presence of such patterns would indicate that
each individual anatomical structure has a unique zoom pattern signature asso-
ciated with it, thereby allowing for classification of fetal ultrasound clips without
directly reading the actual fetal ultrasound images into a convolutional neural
network. Magnification matters because structures can be viewed more or or
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less easily depending on how zoomed in or out an image is. It stands to reason
then that consistent zooming patterns may exist when attempting to find the
standard planes of these structures.

Some datasets come with specific labels that have to do with magnification
settings, e.g. datasets on histopathological breast cancer images with different
magnifications levels [15]. In this, work we use the PULSE dataset [9]. The
PULSE dataset does not have labels specifically for magnification or zoom; how-
ever, in a previous work of ours [1] that has been accepted and peer-reviewed
but is yet to be published, we demonstrated how to extract, from ultrasound im-
ages, labels that we called RQZ (Reverse Quasi-Zoom) values that are inversely
correlated to the zoom values.

RQZ ∝ 1

zoom
(1)

RQZ values range from 0 to 4, where 0 is most zoomed in and 4 is most zoomed
out. RQZ values are inexpensive to obtain, relying only on reading specific pixel
values in a raw US image. We also focused on proving experimentally that a clas-
sifier can be trained to distinguish between the different zoom levels even when
including images of different anatomical structures, rescaling them, and cropping
them to make them all consistently have a fan-shape. That paper determined
that zoom is meaningful information. US images at different RQZ values are
clearly distinguishable. In this work, we mean to take this further and show that
we can discover that specific zooming patterns can be attributed to different
anatomical structures in the first trimester fetal ultrasound scanning.

We were motivated to work on this paper in an effort to actualise the un-
tapped potential of zoom information. In low-resource and low-compute settings,
being able to circumvent processing entire videos and make classifications pos-
sible without such processing could potentially be time and resource efficient.
Classifying a 301 long sequence of integers is less demanding than classifying
a video clip that consists of 301 frames where each frame has a dimension of
224x224 pixels.

1.1 Related Work

Use of Zoom or Magnification Histopathology is the most prominent subdi-
vision within medical imaging that utilizes images at varying magnification lev-
els. For instance, D’Amato et al. [4] employ magnification as a key technique in
the classification of histopathological images through their multi-scale approach.
Others attempt to identify the optimal magnification level for histopathological
images, in order to determine the magnification level at which the best perfor-
mance can be obtained when training convolutional neural networks to detect
breast cancer in histopathological images [17, 2]. There are other ways to con-
sider the zoom level of an image. For example, predicting whether or not the
entire chest silhouette area is visible within the US fan-shaped area of the image
[6].
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(a) US image at RQZ=0 (b) US image at RQZ=1 (c) US image at RQZ=2

(d) US image at RQZ=3 (e) US image at RQZ=4

Fig. 1: Collection of US images at different RQZ values

Studying Sonographer or Operator Behaviour In this work, we first at-
tempt to associate zooming pattern behaviours to the two most important fetal
views in the first trimester, crown rump length and nuchal translucency, proving
how a sonographer manipulates the image content during a scan can tell us what
anatomical structure is being viewed. We focus on these two views specifically,
because in these views, biometric measures are taken once a clear standard plane
depicting the CRL or NT views appears. This implies that a certain view needs
to be achieved before taking the measurements. It stands to reason that sono-
graphers will attempt to obtain a clearer, easier image to work with for their
measurements. This finetuning phase prior to reaching the standard plane is of
particular interest. The period of the finetuning can vary. Yasrab et. al [21, 20]
operate on the basis that it is 3 seconds (or 90 frames worth of content). Droste
et. al [7] analyse probe motion behaviour in order to predict the probe action
taken when conducting a fetal US scan until before a frame worthy of being
considered standard frame quality is found. Droste et. al look into 10 seconds
(300 frames worth of content) before the freeze frame. Teng et. al [19], among
other things, attempt to study how the eye gaze tracking patterns are different
for an expert and a novice. In their work, they look at a 100 frames before the
standard frame.
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1.2 Contributions

Fundamentally, we prove that different anatomical views can be distinguished
from one another solely based on how a sonographer used the zooming functional-
ity of the ultrasound machine without relying on the fetal ultrasound anatomical
content to predict the anatomical class.

2 Methods

Initially, we considered using a window of 2700 frames (or 90 seconds) for the
fine tuning phase; however, that proved too long. 90 seconds prior to an NT
measurement frame could also cover the fine tuning process and then the acqui-
sition and measurement of a CRL frame. Hence, we shortened the window to
300 frames, as shown in Fig. 2. We had also thought to include the entirety of

Fig. 2: The first freeze frame is akin to the point at which a sonographer has
decided to make a measurement. The sequences, on which we train the 1-D
CNN on, end at that first freeze frame. During fine tuning, the sonographer is
still attempting to obtain a better view of some anatomical structure. After the
approporiate structure or view is identified, the sonographer freezes the frame
and proceeds to perform the expected biometry measurements.

freeze frames sequence (so specifying the target frame to be the end of the freeze
frames sequence); however since the actual image content is unchanging during
said time, it would not have told us much about the changing zooming pattern.
It could give us, however, insight into the time spent performing measurements.
Our work involves six operators, reducing operator bias.

2.1 Modelling and Analysis

Model Architecture The architecture of the model used was a 1-D convolu-
tional neural network [13, 11, 14]. You can view the architectural breakdown of
the model in Table 1.

Model Training Process The cross entropy loss was used was the Adam
optimisation algorithm [12]. The model was trained for 1000 epochs.

CrossEntropy(y, y∗) = − (y log(y∗) + (1− y) log(1− y∗)) (2)
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Table 1: Model architecture breakdown for the 1-D CNN. [13, 11, 14]
Layer Type Output Channels Kernel Size Stride Padding

1 Conv1d 32 3 1 1

2 MaxPool1d - 2 2 0

3 Conv1d 64 3 1 1

4 MaxPool1d - 2 2 0

5 Flatten - - - -

6 Linear 128 - - -

7 Linear 2 (number of classes) - - -

2.2 Evaluation Metrics

Accuracy was calculated as follows:

accuracy =
correct

total
× 100 (3)

where correct is the number of correct predictions, and total is the total number
of predictions made. Other evaluation metrics we have used include precision,
recall, and the F1-score. All of which can be found in Table 2.

3 Experiments

In the PULSE study [9, 8, 5], Drukker et al. acquired data from full-length fe-
tal ultrasound scans, which included ultrasound scan videos. Drukker et al.
made use of a state-of-the-art Voluson E8 version BT18 ultrasound machines
from General Electric Healthcare, based in Zipf, Austria [10]. These machines
were equipped with both standard curvilinear probes (C2-9-D, C1-5-D) and
3D/4D probes (RAB6-D) to conduct the ultrasound examinations featured in
the PULSE study.

In our previous work [1], we determined that zoom is meaningful by doing
various tests with our RQZ classifier which is based on the efficientnet-b0 model
[18]. The RQZ classifier was able to achieve 99.42% accuracy in RQZ value
classification, demonstrating near complete success at predicting an ultrasound
image’s RQZ level (even with attempts to manipulate an image post-acquisition
by rescaling and cropping images).

In this work, we look at the target frames, and the 300 frames before each
target frame, this covers the 10 seconds of finetuning before a standard frame.
Target frame is the first freeze frame in the sequence of freeze frames when a
standard plane is likely to be be found. It is important to note that these freeze
frames are obtained from the process introduced by Yasrab et. al [21, 20]. They
had trained a model to identify the frames that are standard-frame worthy. The
raw dataset they used had originally come from the work of Drukker et. al [9],
but Yasrab et. al [21, 20] used optical character recognition (OCR) to determine
when during the scan did the sonographer save the present image. The sono-
graphers’ intention to save the image was considered to be an indication that
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the standard frame had been obtained and a suitable frame at which measure-
ment can take place had been reached. With these labels, Yasrab et. al. trained
a model that could then be used to identify the standard frame quality freeze
frames automatically. We use the predictions of their trained model. The first of
such frames in a sequence that have been automatically labelled is considered to
be our target frame.

4 Results and Discussion

An accuracy of 71.43% is promising for this initial endeavour and shows that
there is indeed a distinct nature to the way that CRL and NT views are ap-
proached by sonographers as Figs. 4 and 5 show. In Fig. 4, the image content,
for both structures, starts at a more zoomed out state but becomes relatively
more zoomed in the further into the clip we go. This behaviour makes sense
because as sonographers draw closer to the specific ultrasound image content
they are trying to acquire and measure, we expect them to zoom in to get a
better view of it. We also notice that for CRL the RQZ value is higher than
that of NT throughout the average clip. This makes sense, since with NT, the
sonographer is trying to focus on observing the fluid in the nuchal fold at the
back of the fetus’s neck. On the other hand, with CRL images, the sonographer
is attempting to measure the entirety of the fetus from its crown to its rump,
and so, as one would expect CRL images are on average more zoomed out than
NT images, where the focus is on the back of the neck.

We believe that the results are not spurious, primarily from the fact that
intuitively the results make strong clinical sense and are clinically explainable.
The CRL measurement requires the entire fetus to be visible on the screen before
a measurement is made (therefore zoomed out), while NT requires a specific part
behind the fetus’s head to be focused on for a measurement (therefore zoomed
in to fill 75% of the screen according to the guidelines) [3]. At this age, the CRL
is roughly 65 ± 19mm, while NT is usually around 1.1 to 3.0 mm, so to view
them well, one would expect different zoom levels for each. [16] We discuss the
main reason that have prevented a higher score from currently being achieved.
Primarily, the data; only 121 sequences were used for training and validation,
and 21 sequences were used for testing.

Table 2: Classification report for the anatomical classes, CRL and NT.
Precision Recall F1-Score Support

CRL 0.70 0.76 0.73 21
NT 0.74 0.67 0.70 21

Accuracy 0.71 42
Macro Avg 0.72 0.71 0.71 42
Weighted Avg 0.72 0.71 0.71 42
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Fig. 3: Confusion matrix of the zoom signature prediction task.

Fig. 4: Comparison of the average zoom pattern signatures. The sequences in the
training set are used for this plot. This figure serves as qualitative evidence on
how CRL and NT differ in terms of zoom.
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Fig. 5: The Most Common Pattern Signature for each structure. The Most Com-
mon RQZ Value at a given frame is determined by the mode at each index in
the sequence.

5 Conclusion

In this paper, we show that CRL and NT images exhibit distinct zooming pattern
signatures that allow them to be distinguished from each other. One possible use
of the proposed approach is faster classification, rather than requiring the direct
classification of a huge number of video clips. We can sidestep that by attempting
to classify the video by observing the zoom, or magnification, values and how
they change to determine the structure being classified.

In the future, we will first retrain the RQZ classifier on the fine-tuning frames
before using the RQZ classifier’s predictions in our analysis of zoom signature
patterns. In this current work, we have considered clips of the two primary biom-
etry measurements of the first trimester being acquired (CRL and NT). In the
future, we will expand to other investigating the zoom pattern signature of other
clips of interest, and how zooming behaviour may change with changes in the
subject’s BMI and the positioning of the fetus. There are additional biometry
measurements in the second trimester whose zoom pattern signatures we would
also be interested in. Investigating the zoom pattern signatures of other gesta-
tional ages could be worthwhile as well. In this work, we have put particular
focus on 300 frames (so 10 seconds) before the target frame as the fine-tuning
phase. We could explore different size windows for the fine-tuning including 90
frames and 100 frames in the future.
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