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Abstract. Reconstructing surgical scenes plays a vital role in computer-
assisted surgery, holding a promise to enhance surgeons’ visibility. Recent
advancements in 3D Gaussian Splatting (3DGS) have shown great poten-
tial for real-time novel view synthesis of general scenes, which relies on ac-
curate poses and point clouds generated by Structure-from-Motion (SfM)
for initialization. However, 3DGS with SfM fails to recover accurate cam-
era poses and geometry in surgical scenes due to the challenges of mini-
mal textures and photometric inconsistencies. To tackle this problem, in
this paper, we propose the first SfM-free 3DGS-based method for surgical
scene reconstruction by jointly optimizing the camera poses and scene
representation. Based on the video continuity, the key of our method is
to exploit the immediate optical flow priors to guide the projection flow
derived from 3D Gaussians. Unlike most previous methods relying on
photometric loss only, we formulate the pose estimation problem as min-
imizing the flow loss between the projection flow and optical flow. A con-
sistency check is further introduced to filter the flow outliers by detecting
the rigid and reliable points that satisfy the epipolar geometry. During
3DGS optimization, we randomly sample frames to optimize the scene
representations to grow the 3D Gaussians progressively. Experiments on
the SCARED dataset demonstrate our superior performance over ex-
isting methods in novel view synthesis and pose estimation with high
efficiency. Code is available at https://github.com/wrld/Free-SurGS.

Keywords: Novel View Synthesis · 3D Reconstruction · 3D Gaussian
Splatting · Endoscopic Surgery.

1 Introduction

Reconstructing surgical scenes is crucial for revealing internal anatomical struc-
tures during minimal invasive surgery (MIS), and enables many downstream
applications such as augmented reality, virtual reality, surgical planning, and
surgical simulation [3, 12, 17]. While neural radiance fields (NeRF) [1] methods
demonstrate success for novel view synthesis from multiple photos or videos,
their applicability is limited for computational efficiency in training and infer-
ence. Recently, 3D Gaussian Splatting (3DGS) [9], which introduces anisotropic

https://github.com/wrld/Free-SurGS
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Fig. 1. 3DGS [9] meets a major limitation in its reliance on SfM. We propose
Free-SurGS to eliminate this need and demonstrate better performance.

3D Gaussians to build explicit scene representations, emerges as a powerful ren-
dering technique for its rendering efficiency and the ability to produce high-
fidelity images. 3DGS showcases significant potential in advancing novel view
synthesis, offering a promising pathway to establish real-time, interactive surgi-
cal simulations.

Despite the advances, 3DGS encounters a major limitation in its reliance on
the camera poses and sparse point clouds from Structure-from-Motion (SfM) [6],
which inevitably influences its application in surgical videos. This pre-processing
stage is too time-consuming to run for long sequence endoscopic videos, limit-
ing their employment in inter-operative applications. Furthermore, SfM is prone
to fail on the appearance of surgical scenes that contain minimal surface tex-
tures and photometric inconsistencies like non-Lambertian surfaces, reflective
surfaces, and illumination fluctuation. This creates difficulties in detecting fea-
tures for correspondence search, leading to pose estimation failure and point
clouds from incomplete views. As shown in Fig. 1, taking the inaccurate poses
and point clouds for initialization, the 3D Gaussians show floaters and artifacts
in the rendered images and reconstruct incorrect geometry. To address this is-
sue, some SfM-free studies [2, 4, 7, 11, 19] are proposed to reduce or eliminate
the reliance on SfM by estimating the camera poses along with optimizing the
scene representations. However, most approaches optimize the camera poses by
minimizing the photometric loss between the rendered image and input frame,
leading to inaccurate pose estimation due to the homogeneity of textures and
photometric inconsistencies.

In this paper, we address the challenges and present Free-SurGS for fast sur-
gical scene reconstruction and real-time rendering from monocular inputs, real-
izing joint optimization for both 3D Gaussians and camera poses. However, the
challenges of the appearance in surgical scenes motivate us to exploit the optical
flow priors based on video continuity to guide the projection flow derived from
the 3D Gaussians. Our contribution is summarized as threefold: 1) We present
the first SfM-free 3DGS-based approach for fast surgical scene reconstruction
and real-time rendering from monocular inputs only. 2) Unlike previous meth-
ods relying on photometric loss only, we formulate the pose estimation problem
as matching the projection flow derived from 3D Gaussians with optical flow.
A consistency check is further proposed to detect the rigid and reliable points
that are consistent with the epipolar geometry. 3) The extensive experimental
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Fig. 2. Overview of our proposed Free-SurGS. Given endoscopic monocular im-
ages as input, we jointly estimate the camera poses and optimize the 3D Gaussians
iteratively by progressive growing.

results on the SCARED datasets demonstrate that our method outperforms the
existing methods in both novel view synthesis and pose estimation, achieving
photo-realistic surgical scene rendering with real-time inference speed.

2 Methodology

In this paper, we model the surgical scene as 3D Gaussians to render photo-
realistic images from free viewpoints. Given a sequence of monocular images
{I0, . . . , IN−1} shot by a moving endoscope, our goal is to better reconstruct the
complete surgical scene via a joint optimization of the camera poses and the 3D
representation (i.e. 3DGS).

Given the input image sequence, we utilize off-the-shelf methods to obtain
the monocular depth {Dt}N−1

t=0 from Depth-Anything [20] and optical flow be-
tween It and It+1 as {Ot→t+1}N−1

t=0 from RAFT [18] as pseudo-GT. As shown
in Fig. 2, we first initialize the 3D Gaussians G0 from the frame I0 utilizing
the point clouds from monocular depth D0 and the identity camera pose T0

(Sec. 2.2). Based on the continuity of surgical video, the 3D Gaussian is updated
from every input image consequently following a progressive growing process.
We formulate the pose estimation problem as guiding the projection flow of 3D
Gaussians with the robust correspondences from Ot→t+1 under a consistency
check, to compensate for the limitation of photometric loss (Sec. 2.3). During
3DGS optimization, we randomly sample frames with estimated poses to opti-
mize the scene representation (Sec. 2.4).
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2.1 Preliminary: 3D Gaussian Splatting

3DGS [9] introduces the 3D Gaussians as differential volumetric representations
of radiance fields, allowing high-quality real-time novel view synthesis. The set
of 3D Gaussians is initialized from the calibrated camera poses and sparse point
clouds generated from SfM. Each Gaussian is defined by position µ, covariance

matrix Σ: G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). The covariance can be decomposed from

a scaling matrix S and rotation matrix R: Σ = RSSTRT . To render a novel
view, the 3D Gaussians are projected to 2D camera view T: Σ′ = JTΣTTJT ,
where J is the Jacobian of the affine approximation of the projective transforma-
tion. To render the color, 3DGS further optimizes opacity and SH coefficients,
following the point-based differential rendering by rasterizing anisotropic splats
with α-blending. The color and depth are rasterized following:

Ĉ =
N∑
i

ciαi

i−1∏
j

(1− αj), D̂ =
N∑
i

diαi

i−1∏
j

(1− αj), (1)

where ci and αi denote the color and opacity of the Gaussian, di is the z-
axis of the points by projecting the center of 3D Gaussians µ to the camera
coordinate. In summary, the parameters to optimize for the Gaussians include:
Θ = {µ,Σ, α, c}. To realize SfM-free scene reconstruction, we need to both
recover the camera poses T and optimize the Gaussian parameters Θ.

2.2 Initialization from Monocular Depth

Given first frame I0 and the known intrinsic K, we generate the pointcloud P
by unprojecting the monocular depth D0 by the initial identity camera pose T0:
P = π−1(T0,D0,K), where π−1 is the pixel-to-world projection. The center of
Gaussians µ is initialized by P. The color of each point c is initialized with the
SH coefficient from the first frame. Other parameters are initialized following the
implementation in 3DGS [9]. After initialization, we optimize the 3D Gaussians
G0 by minimizing the losses introduced in Sec. 2.4.

2.3 Flow-induced Pose Estimation

In this step, we fix the parameters of 3D Gaussians (i.e. assume the current GS is
pseudo-GT) and update the camera pose by matching the projection flow from
3D Gaussians with the robust correspondences from filtered optical flow.
Pose Estimation via Pointcloud Transformation. We formulate the camera
pose estimation problem into predicting the transformation of 3D Gaussians
following [4, 8]. Given the position of Gaussian center µ, we can project it to
2D camera view T by µ2D = K Tµ

(Tµ)z
. Therefore, the camera pose estimation is

equivalent to estimating the transformation of 3D Gaussians.
To update the camera pose by gradient descent, we first transform the 3D

Gaussians G with the camera pose T. We take the camera poses as the opti-
mizable variables and represent the rotations in quaternion q and translation
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Fig. 3. Illustration of our proposed flow-induced pose estimation. (a) The
consistency check is introduced to filter out the outliers in the optical flow map Ot−1→t

to obtain reliable and robust correspondences. (b) We formulate the pose estimation
problem as matching the projection flow with the optical flow, to compensate for the
limitations of photometric loss.

vector t. At timestep t + 1, its camera pose T̂t+1 is initialized from the pre-
vious camera poses T̂t and T̂t−1 based on the constant velocity assumption:
q̂t+1 = q̂t + (q̂t − q̂t−1) +∆q, t̂t+1 = t̂t + (t̂t − t̂t−1) +∆t.

Previous methods [2, 11] mostly adopt the photometric loss Lrgb to match

the rendered color Ĉt+1 and ground truth color It+1 for pose estimation with
gradient optimization:

Lrgb = (1− λ)L1 + λLD-SSIM. (2)

However, the application of photometric loss in optimizing camera poses within
surgical scenes encounters limitations. First, the homogeneity and sparse textur-
ing of the surgical surfaces lead to ambiguities in feature matching. Second, pho-
tometric inconsistencies across different views are quite common due to varied
lighting conditions, the existence of reflective surfaces of the surgical instruments
and tissues, and the presence of non-Lambertian surfaces. Consequently, using
only the photometric loss for pose estimation is prone to converge to some local
minima, thus leading to inaccurate reconstruction in the following step.
Projection Flow. As shown in Fig. 3(b), we introduce a projection flow to
compute the per-pixel movement by projecting the 3D Gaussians from camera
view T̂t to T̂t+1. Specifically, we first unproject xt (i.e. each pixel of It) to 3D

points Xt with rendered depth Dt and T̂t. Next, the correspondences x̂t+1 can
be obtained by projecting Xt to camera view T̂t+1. The projection flow f̂t can
be computed by:

f̂t = x̂t+1 − xt = π(T̂−1
t+1,Xt,K)− xt,

where Xt = π−1(T̂t, D̂t(xt),K).
(3)

By computing the transformation of 3D Gaussians from one camera view to the
next, the projection flow is less dependent on texture variations, making it more
reliable in surgical scenes.
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Visibility & Consistency Check. First, we employ a visibility check to
filter the optical flow from the visibility map to exclude not yet constructed
regions. During the first epoch to learn the scene representation, the 3D Gaus-
sians are partially reconstructed, resulting in empty regions in the rendered
view. We compute the visibility map Mv of 3DGS in the rendered view un-
der T̂t+1, by accumulating the opacity of Gaussians under camera view T̂t+1:

Mv =
∑N

i αi

∏i−1
j (1− αj) > γ, where γ is the threshold for visibility.

Second, a consistency check is introduced to remove the outliers to maintain
rigid and reliable points in the optical flow. In dynamic surgical environments
characterized by transient objects and photometric inconsistencies, it is essential
to identify and preserve correspondences that are both rigid and reliable for
accurate matching. Utilizing the optical flow Ot−1→t, we assess the epipolar
geometry informed by the estimated camera poses T̂t−1 and T̂t. This assessment
ensures that correctly matched points align with their respective epipolar lines
for robust matching. Therefore, we can find the rigid and reliable points that
better satisfy the epipolar geometry in t to further filter out outliers in Ot→t+1

based on the continuity of endoscopic video. As shown in Fig. 3(a), we compute
the Sampson distance [5] to measure the geometric error between a point in
one image and its corresponding epipolar line in the other image. We take a
threshold β to obtain a rigid mask Mr for time t, ensuring that only robust
correspondences are utilized for subsequent pose estimation tasks from t to t+1.
Finally, we obtain the flow mask from the consistency check: M = Mv ⊙Mr.
Flow Loss. To guide the pose estimation from dense correspondence in optical
flow Ot→t+1, the flow loss is defined by minimizing the L2 loss between the
optical flow and projection flow with flow mask M:

Lflow =∥ M⊙ (f̂t − ft) ∥22, where ft = Ot→t+1(xt). (4)

The flow loss compensates for the photometric loss to tackle the challenging
surgical scene and enhance the pose estimation accuracy:

T̂t+1 = argmin
Tt+1

λ1Lrgb + λ2Lflow, (5)

where λ1 and λ2 denote the weight for Lrgb and Lflow. By addressing both the
geometric consistency through Lflow and the photometric similarity through
Lrgb, our free-GS ensures a more robust alignment of the camera poses, even in
the presence of textural homogeneity or photometric anomalies.

2.4 3D Gaussians Optimization

After estimating the camera pose T̂t+1, we optimize the parameters Θ of 3D
Gaussians G. Here, we keep the camera pose fixed and optimize the scene rep-
resentation by minimizing the photometric loss, depth loss, and flow loss:

Θ̂ = argmin
Θ

λ1Lrgb + λ2Lflow + λ3Ldepth, (6)
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Fig. 4. Qualitative results of novel view synthesis and pose estimation.

where λ3 is the weight for depth loss, Ldepth denotes a scale-invariant loss [16]

between rendered depth D̂ and monocular depth D generated from Depth-
Anything [20]. Since the projection flow is derived from rendered depth for
reprojection, the flow loss directly contributes to a more precise estimation of
depth. By optimizing the 3D Gaussians for both photometric consistency and
flow dynamics, the geometry of the 3D Gaussians is not only consistent with the
observed image data but also adheres to the expected motion patterns across
frames. Finally, we add or prune the 3D Gaussians with adaptive density control,
resulting in a progressive growing process for reconstruction.

3 Experiments

3.1 Implementation Details

Experimental Setup. All experiments are implemented using Pytorch [14]
on NVIDIA RTX 3090 GPU. We set the same parameters for all the surgical
scenes. The optimizer and hyper-parameters of 3D Gaussians follow the original
implementation of 3DGS [9]. We use Adam optimizer [10] for pose estimation
with a learning rate of 4 × 10−3. During the progressive growing, we set 30
iterations for both pose estimation and 3DGS optimization.
Datasets. We evaluate our approach on the SCARED Dataset [13], which is a
real-world dataset with challenging endoscopic scenes containing reflective sur-
faces, illumination fluctuations, and weak textures. The image resolution for
training and evaluation is 640× 480 on the SCARED Dataset. We test 9 scenes
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Table 1. Quantitative comparison results on the SCARED Dataset [13].

Methods
Novel View Synthesis Pose Estimation Efficiency

PSNR ↑ SSIM ↑ LPIPS ↓ RPEt ↓ RPEr ↓ ATE ↓ Train ↓ FPS ↑ GPU ↓
SC-NeRF [7] 9.943 0.344 0.654 6.436 6.802 13.67 5.0 h 0.074 3.2 G
NeRFmm [19] 16.55 0.361 0.540 5.681 9.108 12.74 9.5 h 0.27 6.0 G
BARF [11] 16.25 0.511 0.658 5.005 6.515 9.832 7.2 h 0.12 8.5 G

Nope-NeRF [2] 21.42 0.620 0.523 5.632 5.685 12.30 50.0 h 0.34 8.0 G
Ours 24.35 0.741 0.270 3.299 1.966 5.854 1.0 h 60.0 3.8 G

Table 2. Ablation study of flow-induced pose estimation. “Con.” refers to the con-
sistency check to maintain rigid and reliable points.

Lrgb Lflow Con. PSNR ↑ SSIM ↑ LPIPS ↓ RPEt ↓ RPEr ↓ ATE ↓
✓ 20.57 0.603 0.438 8.574 4.151 10.08

✓ 22.75 0.652 0.382 4.133 2.769 7.410
✓ ✓ 23.53 0.688 0.291 3.512 2.438 6.435
✓ ✓ ✓ 24.35 0.741 0.270 3.299 1.966 5.854

from the SCARED Dataset with 50-150 frames for each scene with one-eighth
of the images for test following [2]. The SCARED Dataset also provides ground
truth camera poses of every frame for evaluation.
Evaluation Metrics. We evaluate the performance of novel view synthesis via
PSNR, SSIM [21], and LPIPS [15]. To compare the accuracy of estimated camera
poses, we evaluate Absolute Trajectory Error (ATE), and Relative Pose Error
(RPE), including rotation RPEr and translation RPEt following [2]. Note that
the unit for RPEt and ATE is millimeter (mm), and the unit for RPEr is degree.

3.2 Quantitative and qualitative results

We compare our method with existing state-of-the-art SfM-free methods: Nope-
NeRF [2], BARF [11], NeRFmm [19] and SC-NeRF [7]. Quantitative results in
Tab. 1 demonstrate that our method outperforms all the baselines. Only based
on photometric loss, BARF [11], NeRFmm [19], and SC-NeRF [7] fail to re-
cover the correct camera pose, suffering from the challenging surgical scenes.
With constraints from depth distortion, Nope-NeRF [2] improves the perfor-
mance compared to other baselines but still fails to handle large endoscopic
movement (See Fig. 4). Thanks to the flow matching and the consistency check,
our Free-SurGS could estimate accurate camera poses for scene reconstruction
and render photo-realistic images with 3DGS. The efficiency comparison in Tab.
1 also demonstrates our faster training, higher inference speed, and lower mem-
ory of parameters, satisfying real-world surgical applications.

We conduct ablation studies to validate the effectiveness of the proposed
modules in Tab. 2. The flow loss Lflow compensates for the limitation of pho-
tometric loss and improves the accuracy of pose estimation. The consistency
check could further enhance the robustness of large movement and semi-static
scenes. With more accurate poses as input, the performance of 3DGS is further
improved to reconstruct the surgical scene.
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4 Conclusion

In this paper, we propose Free-SurGS as the first SfM-free 3DGS-based method
to realize multi-view surgical scene reconstruction. To handle the challenging
surgical scene with minimal textures and photometric inconsistencies, we use
the optical flow priors to guide the projection flow derived from 3D Gaussians
for robust pose estimation. Extensive experiments on the SCARED dataset show
that our method outperforms the previous methods in both novel view synthesis
and pose estimation, achieving fast reconstruction and real-time rendering with
less training time. Our method shows potential to provide a highly realistic and
interactive environment that could advance preoperative planning and training
practices. However, our method is limited in handling dynamic scenes with severe
tissue deformations, which we will address in the future work.
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