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Abstract. The Vision-Language Foundation model is increasingly in-
vestigated in the fields of computer vision and natural language process-
ing, yet its exploration in ophthalmology and broader medical applica-
tions remains limited. The challenge is the lack of labeled data for the
training of foundation model. To handle this issue, a CLIP-style reti-
nal image foundation model is developed in this paper. Our foundation
model, RET-CLIP, is specifically trained on a dataset of 193,865 patients
to extract general features of color fundus photographs (CFPs), employ-
ing a tripartite optimization strategy to focus on left eye, right eye,
and patient level to reflect real-world clinical scenarios. Extensive exper-
iments demonstrate that RET-CLIP outperforms existing benchmarks
across eight diverse datasets spanning four critical diagnostic categories:
diabetic retinopathy, glaucoma, multiple disease diagnosis, and multi-
label classification of multiple diseases, which demonstrate the perfor-
mance and generality of our foundation model. The sourse code and pre-
trained model are available at https://github.com/sStonemason/RET-
CLIP.

Keywords: Vision-Language Pre-training · Foundation Model · Retinal
Fundus Image.

1 Introduction

Foundation models trained on large-scale, multi-task datasets are now becoming
increasingly popular and have achieved success in the fields of computer vision
and natural language processing. Foundation models excel in generalization in
feature extraction, offering significant potential for addressing the complex chal-
lenges of clinical applications. However, the development of medical foundation
models is still in its nascent phase, primarily hindered by the lack of high-quality
data and concerns around patient privacy. Although initial efforts have been
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made [23, 19, 24, 9, 12, 6, 11], the effectiveness of these models, particularly in an-
alyzing retina fundus images, has yet to meet expectations, underscoring the
urgent need for focused advancements in this area.

In the clinical diagnosis and treatment of ocular diseases, medical imaging,
such as color fundus photography (CFP), and the detailed image interpreta-
tions and diagnostic reports written by professional ophthalmologists are indis-
pensable. This makes the clinics of ophthalmology inherently rich in image-text
multi-modality data, which holds significant potential for enhancing clinical ap-
plications. RETFound [25] is a foundation model for retinal images based on
self-supervised learning. However, it solely utilizes image data and overlooks the
equally vast amount of clinical diagnostic text. To address this limitation, CLIP
[17], a powerful vision-language self-supervised paradigm, is widely explored in
foundation models. By aligning the information of image and text in a shared
representation space using a large corpus of image-text pairs, CLIP-style models
can understand and associate visual content with natural language information.
This results in feature representations with stronger generalization capabilities.
Many studies focus on training vision-text models in the medical field [23, 19, 9,
22, 18, 7, 20, 2]. PMC-CLIP [9] collects image-description pairs from large amount
of scientific documents and trains a CLIP-style model based on them. FLAIR
[18] is a pre-trained vision-language model designed to understand retinal fun-
dus images. The textual data utilized in such research often comes from captions
in medical papers or through the manual annotation of simple labels. However,
clinical diagnostic reports, rich in valuable textual information, remain under-
utilized in this context.

Moreover, the conventional approaches often involve treating CFPs of in-
dividual eyes as separate entities during model training. This necessitates the
extraction of information corresponding to each eye from the original clinical
diagnostic reports, which may not always clearly differentiate between left and
right eyes. The manual processing involved in this procedure requires special-
ized knowledge and could introduce errors and increase costs significantly due
to the potential for human-induced noise. Conversely, considering both eyes of a
patient together provides a more holistic and clinically meaningful approach in
clinical scenarios.

To alleviate the above issues, we have the following contributions in this pa-
per: Firstly, we propose a vision-language foundation model for CFPs, named
RET-CLIP, which we believe is the first attempt to leverage clinical diagnos-
tic reports to build a retinal foundation model, enriching the model’s visual
encoding capabilities with practicality and authenticity. The diagnostic reports
in Chinese are included, extending the linguistic versatility of the research do-
main beyond English. Secondly, a novel strategy is proposed to decouple the
information of left and right eyes in diagnostic reports, which is a simple yet ef-
fective paradigm for building a retinal foundation model. In practical scenarios,
diagnostic reports are usually patient-level, mixing information from both eyes,
which brings a big challenge for directly using CLIP to build foundation mod-
els. The proposed monocular and patient-level contrastive learning approach can
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handle this challenge in the ophthalmology domain. Lastly, our model achieves
state-of-the-art performance across diverse tasks and datasets, confirming the
effectiveness of the proposed training strategy.

2 Method

2.1 Data Collection and Preprocessing

Dataset acquisition. We collected a dataset of retina fundus binocular images-
text triplets (RET-Clinical) at the patient level for RET-CLIP. The dataset in-
cludes a total of 193,865 samples from Beijing Tongren Hospital, Beijing, China.
Each patient’s triplet includes two CFPs for left and right eyes, alongside a
clinical diagnostic report.

Data preprocessing and augmentation. For the CFPs, all of them are
resized to 512×512. The augmentation includes random crop followed by resizing
to 224× 224, random horizontal flipping, color jitter, and image normalization.
For diagnostic reports, we focus on correcting typos and consecutive punctua-
tion errors caused by human input, restoring abbreviations to their full expres-
sions, unifying mixed Chinese and English expressions into Chinese to align with
our text encoder’s language capabilities, and ensuring the text is coherent and
grammatically correct by manual scrutiny. It’s important to highlight that the
preprocessing of text data only involves basic text standardization mentioned
above, avoiding the need for advanced clinical knowledge or modifications that
may alter the original content or meaning.

2.2 Model Architecture

As shown in Figure 1, we trained a Visual-Language model called RET-CLIP
under the CLIP paradigm using our constructed binocular images-text triplets.
RET-CLIP consists of a visual encoder and a text encoder, which extract image
features from CFPs and text features from clinical diagnostic reports, respec-
tively. During pre-training, image-text contrastive learning is performed at the
monocular and patient level jointly. Patient level examines data features from
a holistic patient perspective, effectively leveraging the information in raw data
while minimizing the interference of manual preprocessing in the pre-training
phase. Concurrently, the binocular level guides the model towards acquiring
finer-grained features than the patient level. Combined together, these method-
ologies can improve RET-CLIP’s performance.

Given a mini-batch containing N binocular images-text triplets (i.e., N pa-
tients), D = {(Il

1, Ir
1 , T1), · · · , (Il

N , Ir
N , TN )}, where Il

i , Ir
i and Ti represents the

CFP of left eye, the CFP of right eye and the diagnostic report of the ith patient,
respectively. The visual encoder takes Il

i and Ir
i as input, while the text encoder

is fed with Ti.
Visual encoder. The left and right (Il, Ir) CFPs for a patient are encoded

to the embedding dimension of d using a ViT-based [5] encoder Φv(·) respectively:

V l = Φv(Il) ∈ Rd,V r = Φv(Ir) ∈ Rd. (1)
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Fig. 1. Overview of the RET-CLIP foundation model.

where V l and V r represent the image features of the left and right eye, respec-
tively. Next, concatenation and a simple Multilayer Perceptron (MLP) Fv(·) are
employed to merge the image features of left and right eyes to derive compre-
hensive patient-level image features:

V p = Fv(V
l ⊕ V r) ∈ Rd, (2)

where ⊕ denotes concatenation.
Text encoder. For a given patient’s diagnostic report T , a BERT-based

[4] encoder Φt(·) is implemented to encode the clinical descriptions with a text
token of length l:

T = Φt(T ) ∈ Rl×d, T 0 ∈ Rd, (3)

where T denotes the sentence embedding, T 0 denotes the embedding for [CLS]
token. We then implement three stacked two-layer nonlinear MLPs Fl(·), Fr(·),
Fp(·) to decouple T 0 into textual features representing the left eye, right eye,
and patient level, termed as T l, T r, and T p, respectively:

T l = Fl(T 0), T r = Fr(T 0), T p = Fp(T 0), T l,T r,T p ∈ Rd. (4)

2.3 Training Objective

For the provided mini-batch, termed as D, the extracted feature set
F , which is {(V l

1,V
r
1,V

p
1,T

l
1,T

r
1,T

p
1), · · · , (V

l
N ,V r

N ,V p
N ,T l

N ,T r
N ,T p

N )}, is
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then divided into three subsets: F l = {(V l
1,T

l
1), · · · , (V

l
N ,T l

N )}, Fr =
{(V r

1,T
r
1), · · · , (V

r
N ,T r

N )}, and Fp = {(V p
1,T

p
1), · · · , (V

p
N ,T p

N )}, correspond-
ing to left eye, right eye, and patient level, respectively. The image and text
features of the same patient in each subset are positive samples of each other,
while the rest are negative samples. The cosine similarity matrix is calculated
on each subset.

For the subset of left eye features, we obtain the image feature matrix Vl =
(V l

1, · · · ,V
l
N ) ∈ RN×d and the text feature matrix Tl = (T l

1, · · · ,T
l
N ) ∈ RN×d.

We measure the inter-sample similarity, termed as Pv2t and Pt2v, using the
cosine distance S(·):

Pv2t = S(Vl,Tl) ∈ RN×N , Pt2v = S(Tl,Vl) ∈ RN×N . (5)

Then we calculate the contrastive loss of the left eye:

Ll =
1

2
(CE(Pv2t,Yv2t) + CE(Pt2v,Yt2v), (6)

where Yv2t and Yt2v represent the one-hot labels, CE refers to InfoNCE loss
[13].

Then we calculate Lr and Lp for right eye and patient level based on Fr and
Fp in the same way. The final loss is the sum of the above three:

L = Ll + Lr + Lp. (7)

2.4 Implementation

The vision encoder utilizes the base-sized version of the vision transformer (ViT-
base) [5], while the text encoder employs the base-sized version of RoBERTa
(RoBERTa-base) [10], both are initialized with the Chinese-CLIP weights [21].
AdamW is used as the optimizer. The batch size is 256, and training is performed
using NVIDIA GeForce RTX 4090. The training process consists of 10 epochs,
with the first 50 steps dedicated to warming up the model (from 0 to a learning
rate of 3× 10−5).

3 Experiments

3.1 Tasks and Datasets

We focus on designing downstream evaluation experiments primarily for visual
tasks. These tasks contain four main categories: diagnosis of diabetic retinopathy,
glaucoma, multiple diseases, and multi-label classification of multiple diseases.

For diabetic retinopathy diagnosis, IDRID [16] and APTOS-2019
(https://www.kaggle.com/competitions/aptos2019-blindness-detection/data)
are used. The labels for diabetic retinopathy are no, mild, moderate, severe,
and proliferative retinopathy. The IDRID dataset comprises 516 images, while
the APTOS dataset contains 3662 images.
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For glaucoma diagnosis, PAPILA [8] (488 images in total) and Glaucoma
Fundus [1] (1544 images in total) are used. They both have three categorical
labels, non-glaucoma, suspected glaucoma (early glaucoma), and glaucoma (ad-
vanced glaucoma).

For multiple disease diagnosis, JSIEC [3] (1000 in total) and Retina
(https://www.kaggle.com/datasets/jr2ngb/cataractdataset) (601 in total) are
tested. JSIEC contains 39 categories of common referable fundus diseases and
conditions. Retina includes labels for normal, glaucoma, cataract, and other reti-
nal diseases.

For multi-label classification of multiple diseases, RFMID [15] and
ODIR (https://odir2019.grand-challenge.org/) are tested. RFMID includes 3200
images with 28 categories of common referable fundus diseases and conditions.
ODIR includes 10000 images (5000 patients’ paired left and right eyes) with
labels of normal, diabetic retinopathy, glaucoma, cataract,age-related macular
degeneration (AMD), hypertension, myopia, and other diseases.

For the IDRIR, the entire dataset is officially divided into a test set com-
prising 20% of the data, with the remaining 80% designated as the training set.
In our experiments, we further split the training set into a training set and a
validation set using a 4:1 ratio. Similarly, for the PAPLA, we follow the official
partitioning method, which aligns with the approach described above. Regarding
the RFMID, the official division includes distinct sets for training, validation,
and testing; we adhere to this official partitioning. For all other datasets, we
divide them into training, validation, and test sets using a 0.56:0.14:0.3 ratio,
following RETFound’s [25] partitioning method. For all datasets, samples within
each category are initially distributed based on the specified proportions before
being combined to ensure consistent category distribution across the training,
validation, and test sets.

When adapting to downstream tasks, the input image is mapped to a high-
level feature representation by the visual encoder. A simple linear prediction head
is then applied, followed by a Sigmoid or Softmax layer to achieve classification.

For each task, two adaptation methods are implemented: linear probing,
training the classifier only with the encoder frozen, and fine-tuning, where both
the encoder and classifier are trained. Each evaluation process consists of 50
epochs with a batch size of 16. The model weights with the best performance on
the validation set are saved for testing.

3.2 Comparision Methods and Evaluation Metrics

To demonstrate the superiority of our method, we compare two broad categories
of models: foundation models trained on non-CFP datasets (Chinese-CLIP [21],
PMC-CLIP [9], DINOv2 [14]) and models designed for CFP vision tasks (RET-
Found [25], FLAIR [18]).

We use the area under the receiver operating curve (AUROC) and area under
the precision-recall curve (AUPR) as the evaluation metrics. We evaluate five it-
erations with different random seeds for each model on each downstream dataset
to calculate the mean values. We also conduct the t-test for each downstream
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task to determine the significance level at which the top-performing method
surpasses the others (see Supplementary Materials).

3.3 Result

RET-CLIP outperforms five comparison models across eight datasets (four cat-
egories) as introduced before, demonstrating strong generalization capabilities.

For linear probing, the results are shown in Table 1 and Table 2. RET-
CLIP demonstrates superior performance on almost all datasets, which indicates
that RET-CLIP has learned a rich feature representation during the pre-training
phase, demonstrating the capability to capture high-quality features.

Table 1. Diabetic retinopathy and glaucoma diagnosis results for linear probing. The
best results on each metric are highlighted in bold.

Models IDRID APTOS2019 PAPILA Glaucoma Fundus
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

CN-CLIP [21] 0.633 0.336 0.806 0.429 0.658 0.473 0.863 0.716
PMC-CLIP [9] 0.585 0.303 0.756 0.368 0.773 0.603 0.899 0.780
DinoV2 [14] 0.748 0.463 0.783 0.432 0.740 0.556 0.891 0.746

RETFound [25] 0.665 0.368 0.745 0.370 0.620 0.511 0.899 0.773
FLAIR [18] 0.700 0.475 0.849 0.515 0.746 0.595 0.872 0.672

OURS 0.856 0.616 0.923 0.656 0.775 0.667 0.893 0.789

Table 2. Multiple disease diagnosis and multi-label classification of multiple diseases
results for linear probing.

Models JSIEC Retina RFMID ODIR
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

CN-CLIP [21] 0.783 0.239 0.738 0.514 0.819 0.293 0.801 0.483
PMC-CLIP [9] 0.947 0.654 0.778 0.597 0.854 0.372 0.800 0.506
DinoV2 [14] 0.873 0.446 0.813 0.635 0.860 0.430 0.825 0.550

RETFound [25] 0.704 0.167 0.630 0.434 0.842 0.409 0.738 0.401
FLAIR [18] 0.843 0.304 0.773 0.557 0.773 0.254 0.858 0.531

OURS 0.982 0.855 0.935 0.864 0.925 0.552 0.902 0.682

For fine-tuning, as shown in Table 3 and Table 4, RET-CLIP demonstrates
superior performance across nearly all tasks. This outcome substantiates RET-
CLIP’s robust feature extraction and generalization capabilities. Furthermore,
it suggests that RET-CLIP not only captures high-quality features but also
exhibits strong adaptability, enabling effective customization for specific tasks.

It’s noteworthy that the previous foundation models designed for CFPs do
not exhibit an advantage over models trained on non-CFP datasets. RETFound’s
[25] image reconstruction-focused paradigm may prioritize features related to
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Table 3. Diabetic retinopathy and glaucoma diagnosis results for fine-tuning.

Models IDRID APTOS2019 PAPILA Glaucoma Fundus
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

CN-CLIP [21] 0.778 0.506 0.881 0.619 0.804 0.690 0.951 0.876
PMC-CLIP [9] 0.785 0.511 0.776 0.386 0.798 0.659 0.925 0.827
DinoV2 [14] 0.791 0.533 0.920 0.675 0.797 0.681 0.955 0.884

RETFound [25] 0.822 0.496 0.943 0.726 0.855 0.748 0.943 0.863
FLAIR [18] 0.795 0.529 0.932 0.686 0.752 0.610 0.905 0.792

OURS 0.863 0.630 0.951 0.748 0.853 0.754 0.958 0.889

Table 4. Multiple disease diagnosis and multi-label classification of multiple diseases
results for fine-tuning.

Models JSIEC Retina RFMID ODIR
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

CN-CLIP [21] 0.992 0.882 0.839 0.691 0.901 0.480 0.859 0.598
PMC-CLIP [9] 0.964 0.738 0.875 0.742 0.894 0.456 0.819 0.542
DinoV2 [14] 0.996 0.918 0.893 0.771 0.914 0.547 0.867 0.621

RETFound [25] 0.990 0.884 0.847 0.697 0.889 0.489 0.850 0.620
FLAIR [18] 0.917 0.704 0.863 0.679 0.870 0.397 0.860 0.601

OURS 0.999 0.972 0.942 0.871 0.946 0.581 0.917 0.715

the rebuilding of CFP, which lack the granularity and quality needed for spe-
cific downstream tasks, hindering its broader applicability. FLAIR [18], while is
a CLIP-style model, does not suit ophthalmic tasks as it uses the text provi-
sion method employed by the original CLIP [17], which is designed for natural
contexts, offering limited textual insights from single labels. Moreover, its de-
pendence on public datasets for training constrains its performance due to their
limited scale and quality. In contrast, RET-CLIP leverages rich textual infor-
mation from clinical reports to extract detailed features for ophthalmic tasks
better, showcasing the benefits of integrating diagnostic reports into the train-
ing of medical CLIP-style models.

3.4 Ablation study

The results, as shown in Table 5, confirm the effectiveness of optimizing objec-
tives at both monocular and patient levels. As previously discussed, the combina-
tion of the global information provided at the patient level with the finer-grained
features contributed at the monocular level is essential to achieve optimal per-
formance.

4 Conclusion

In this study, we compile a binocular images-text dataset, RET-Clinical, derived
from 193,865 clinical patients, with which, we jointly optimize and pre-train
a CLIP-style model, RET-CLIP, cooperating with the information of left eye,
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Table 5. Results of ablation studies. Monocular-level loss refers to Ll plus Lr.

AUROC AUPR
Monocular-level Loss ✓ ✓ ✓ ✓

Patient-level Loss ✓ ✓ ✓ ✓
IDRID 0.863 0.860 0.847 0.63 0.623 0.619

APTOS-2019 0.951 0.945 0.941 0.748 0.737 0.759
PAPILA 0.853 0.864 0.846 0.754 0.745 0.739

Glaucoma Fundus 0.958 0.948 0.957 0.889 0.869 0.888
JSIEC 0.999 0.997 0.997 0.972 0.949 0.962
Retina 0.942 0.939 0.935 0.871 0.869 0.876
RFMID 0.946 0.924 0.940 0.581 0.573 0.578
ODIR 0.917 0.909 0.905 0.715 0.692 0.696

right eye, and patient level. RET-CLIP achieves state-of-the-art results across
eight downstream tasks spanning four critical diagnostic categories. Our research
narrows the existing void in ophthalmic vision-language models by integrating
textual data from clinical diagnostic reports, thereby offering insights into the
applicability of raw clinical texts in the wider medical domain.
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