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Abstract. Emerging evidence from advanced neuroimaging study sug-
gests common neurological bases across different brain disorders (BD)
throughout the human lifespan. Researchers thus aim to create a general
neuroimaging-based diagnosis model for population-scale screening for
multiple BDs. Existing models predominantly use the transfer learning
paradigm for BD tasks based on either out-of-domain models pre-trained
with large-scale but less-related data and tasks or in-domain models
pre-trained on healthy population brain data with auxiliary tasks such
as age prediction. The former approach has few recognition of inter-
individual variations and BD-related features in the population-scale
brain data, while the latter relies on weak implicit association between
the proxy and BD tasks. In this work, we propose a two-stage vision-
language model adaptation strategy to incorporate novel knowledge into
the out-of-domain well pre-trained model (e.g., BLIP) by aligning basic
cognition and brain structural features for accurate diagnosis of mul-
tiple BDs. First, using life-span Human Connectome Project data, we
textualize the demographics and psychometrics records and construct
knowledge-injecting textual prompts (with important cognitive science
contexts). The model is expected to learn the alignment between brain
structure from images and cognitive knowledge from texts. Then, we cus-
tomize knowledge-reactivating instructions and further tune the model
to accommodate the cognitive symptoms in each BD diagnosis task. Ex-
perimental results show that our framework outperforms other state-of-
the-art methods on three BD diagnosis tasks of different age groups.
It demonstrates a promising and feasible learning paradigm for adapt-
ing large foundation models to the cognitive neuroscience and neurology
fields. Code is available at https://github.com/openmedlab/BrainSCK.
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1 Introduction

The mental health of children and elders is frequently affected by a wide spec-
trum of brain disorders (BDs), such as attention deficit hyperactivity disorder
(ADHD), autism spectrum disorder (ASD), and Alzheimer’s disease (AD), whose
prevention, diagnosis, and treatment remain challenging. Recently, there has
been accumulating evidence suggesting that different BDs in early and late life
could share certain common cognitive symptoms and brain structural and func-
tional bases[20,19,17]. Researchers thus attempt to locate the transdiagnostic
biomarkers and build a generalized foundation model for facilitating the diag-
nosis of multiple BDs based on neuroimaging data, whose success would reform
current diagnosis and treatment frameworks of multiple BDs.

Existing models are mainly utilizing two streams of training framework. Some
models are pre-trained on natural images or medical images for other organs
with general supervision tasks and tuned directly for classifying healthy and
BD populations [22,3,16]. This routine aims to utilize the potential of models
pre-trained on rich data resources but could ignore neural processes associated
with the BD-related alternations, such as aging effects, gender effects, and in-
dividual differences in cognitive ability. These alternations could interfere with
the detection of general health-to-BD deviation and confuse the model. Alter-
natively, more models are first established for the normal neural processes in
brain data from a healthy population with pre-training tasks, such as age pre-
diction, gender prediction, and cognitive ability prediction[1,9,23,13]. Then, the
pre-trained models are transferred to identify BDs. This stream of methods the-
oretically relies on the association between the pre-training task and the BD,
e.g., the relationship between aging and AD. However, they remain limited in
systematically modeling the various contexts and knowledge of cognitive func-
tions when using simple numbers to encode the task goal. In addition, as only
image representations are shared, the lack of explicit activation of the associated
features of BDs from the pre-trained model could vastly suppress the usefulness
of a pre-trained model and lead to less effectiveness in diagnosing BDs.

The standardized toolkit, NIH toolbox [26], has been popular in the field of
cognitive neuroscience. It systematically measures basic cognitive abilities that
span the general ability, including executive function, episodic memory, language,
processing speed, etc. These scales are closely related to the hallmark cognitive
alternations under BDs, such as the executive function deficits in ASD and
ADHD [10,18]. It will be of paramount value to translate these measurements in
the contexts of cognitive functions and associate them with the brain structure
in imaging data. Inspired by the recent advance of vision-language models,e.g.,
BLIPs [15,14], we align the basic cognition with brain structural features in
images to complement the model pre-trained with nature image-text pairs. In
such a training setting, it can facilitate the precise reactivation of pre-learned
knowledge in downstream BD analysis using prompt-based methods, e.g.,[27].

In this work, we propose a novel pre-training framework to align basic cog-
nition and brain structural features and intend to build a general pre-trained
model for diagnosing multiple BDs throughout the human lifespan. By employ-
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Fig. 1. Demonstrations of the proposed knowledge-injecting prompt and knowledge-
reactivating instruction for model pretraining and downstream tuning, respectively,
inspired by the conceptual dependencies (color-coded) among cognitive function, mea-
sures, and symptoms.

ing the population-scale human connectome project (HCP) data [2,21,24] with
a variety of lifespans, we adapt the BLIP-2 model to learn further the align-
ment between brain structural T1 images and the knowledge-injecting prompts
(textual tokens, shown in Fig. 1) composed with image-associated subjects’ age,
gender, and the NIH toolbox psychometrics. Additionally, we design knowledge-
reactivating instruction for the instruction tuning stage, letting the model recall
the pre-learned knowledge regarding the target BD diagnosis tasks. Using the
proposed framework, our model demonstrates higher performance in diagnos-
ing ASD, ADHD, and early diagnosis of AD than other state-of-the-art (SOTA)
methods, even when our method only uses 30% of the training data.

2 Materials and Methods

The proposed framework based on Brain Structure, Cognition, and Knowledge,
named BrainSCK, involves two stages of pre-training and instruction tuning, re-
spectively. In the first stage, BrainSCK aligns the brain structure to demographic
and cognitive information, formatted as knowledge-injecting prompts, using the
healthy subjects from lifespan HCP data. The second stage involves teaching the
model to conduct BD diagnosis as a visual question-answering (VQA) task with
the help of knowledge-reactivating instructions. The BrainSCK model largely
leverages the BLIP-2 [14] architecture to process vision-language data.

2.1 BrainSCK Model Architecture

As depicted in Fig. 2 (c), the model consists of a 3D projector, a pre-trained
image encoder, and a querying transformer. Initially, the volumetric input im-
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Fig. 2. Overview of the BrainSCK framework: (a) and (b) the workflows of pre-training
and instruction tuning; (c) Details about the BrainSCK model.

age I is segmented into a series of 3D blocks. Similar to the pipeline in ViT [7],
these blocks are transformed into embedding sequences using a learnable linear
projection and added with position embeddings. These embedding sequences
pass through the frozen image encoder fv to form the image embeddings. In the
querying transformer (Q-Former, learnable) fq, the image embeddings interact
with k learnable query vectors Q through cross-attention, resulting in k visual
features V . Concurrently, the prompt undergoes a transformation into textual
embeddings T using the text encoder of Q-Former. The resulting visual fea-
tures V are then aligned with the textual embeddings T using the image-text
contrastive loss LITC .

For the instruction tuning stage, a fixed large language model (LLM, we use
BioMedLM in this work) flm is employed after the BrainSCK model to receive
both the adapted visual encodings V

′
from the Q-Former and the task instruction

S as input to generate the answer A guided by the language modeling loss LLM .

2.2 Pretraining

Data preparation We select the cross-section data in HCP-D (development),
HCP-YA (young adult), and HCP-A (aging) from the life-span HCP dataset to
pre-train the model. The dataset thus covers 2,210 subjects aged from 6 to 86
years old and allows learning about normal development and aging in the large
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span of human life. The details of the data characteristics are listed in Supple-
mentary Table 1. The T1-weighted images provide structural features of the indi-
vidual brain, which is preprocessed with an HCP minimal preprocessing pipeline
[8] and is available from the HCP website. The demographic information such as
age and gender is also included. Simultaneously, we extract seven age-adjusted
standard scores of NIH toolbox psychometric testing from the corresponding
subjects. Each of the psychometrics aims to measure a specific cognitive ability.
The details and correspondence can be found in Fig. 1 as color codings.

Knowledge-injecting prompt The knowledge-injecting prompt is then de-
signed for demographics, especially psychometrics. For demographics, we directly
fill in the values into a text template. For psychometrics, a score falling below
85 indicates the relatively poor performance of the related cognitive function
by design, and vice versa [26]. Therefore, besides the value-filling template, as
“...scores..., below...” or “...scores..., above...”, we additionally explain the values
as either “...shows poor performance...indicating...” or “...shows normal perfor-
mance...” (see Fig. 1 and Supplementary Table 2). For each psychometric, the
wording to explain the poor performance is separately and carefully designed
based on related cognitive neuroscience literature and the potential links to BD
symptoms.

Structure-cognition alignment All psychometric modalities, rather than
related ones, from the entire HCP dataset, are utilized for pretraining. The
knowledge-injecting prompts, featuring a comprehensive description of cognitive
abilities alongside brain images, are input into the BrainSCK model for align-
ment training. The training process concludes when the loss LITC converges.

2.3 Instruction Tuning

Knowledge-reactivating instruction To facilitate BD diagnosis, we craft
knowledge-reactivating instructions comprising demographics (age, gender), typ-
ical BD symptoms, and a binary question. To activate and enhance the connec-
tion between pre-training and downstream tasks, we incorporate key cognitive
symptoms from the BD symptom list, using identical wording as that used to de-
scribe healthy subjects with relatively poor cognitive abilities in the knowledge-
injecting prompt. As shown in Fig. 1 and Supplementary Table 3, the typical
symptoms outlined in the instruction for ADHD involve “inattention”, “disinhi-
bition” and “impaired working memory”, which are closely linked to cognitive
functions such as attention and working memory.

VQA for BD diagnosis During instruction tuning, the BrainSCK module is
initialized with the pre-trained parameters. Subsequently, image-text alignment
is conducted between the brain image and corresponding BD subject prompt,
including age, gender, and diagnosis (Fig. 2 (b)). Following this, we employ
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knowledge-reactivating instructions to guide the LLM model in diagnosing spe-
cific BD alongside the aligned visual features. In this stage, we use both LITC

and LLM . During inference, the model can offer the diagnosis answer with a
paired image-instruction input.

3 Experimental details

3.1 BD datasets

The ADHD-200 [5] and Autism Brain Imaging Data Exchange-I (ABIDE-I) [6]
datasets for ADHD and ASD studies are used for early-life BD identifications.
From ADHD-200, we include T1 data, age, and gender from 766 subjects (279
ADHD). And for ABIDE-I, we select 327 autism and 492 typical development
subjects with the same data modality. AD is chosen as the representative BD
in the late life of humans. An early AD diagnosis is essential but more difficult.
Therefore, from Alzheimer’s disease neuroimaging initiative (ADNI) [11], we
include the latest scan of image and demographic data from 683 subjects with
317 mild cognitive impairment (MCI), which is regarded as an early status of
AD. More information about the three datasets can be found in Supplementary
Table 1. Each of these datasets is randomly divided into training, validation,
and testing subsets using a 7:1:2 ratio.

3.2 Implementation

In the pretraining stage, we maintain the same frozen image encoder (ViT-g/14
[7]) and Q-Former (initialized with BERT-base [12]) as in BLIP-2. During the
instruction tuning stage, the Q-Former inherits from our pre-trained version.
The LLM of FLAN-T5 [4] used in BLIP-2 is replaced by a medical field LLM
of BioMedLM [25]. During training, we set the batch size to 4 and utilized the
AdamW optimizer with a learning rate of 2×10−5. All experiments are conducted
on a single NVIDIA GeForce RTX 3090 GPU.

3.3 Evaluation metrics

As our model only generates diagnosis as texts rather than probability, we used
three metrics to evaluate the model performance in BD diagnosis, including
accuracy, F1-score, and Cohen’s κ. F1-score is a metric that combines precision
and recall, assessing the balance between false positives and false negatives. κ is
a statistical measure that assesses the agreement between predicted and actual
classification beyond what would be expected by chance.

4 Results

4.1 Comparison study

In Table 1, we compare our proposed method with different SOTA pre-trained
methods on three BD diagnosis tasks. Our method demonstrates improvements
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Table 1. Comparisons between four existing methods with the proposed BrainSCK
for BD diagnosis on the testing subsets of ADHD-200, ABIDE-I, and ADNI datasets.

Method
ADHD-200 ABIDE-I ADNI

Acc F1 κ Acc F1 κ Acc F1 κ

Med3D[3] 0.669 0.541 0.289 0.642 0.337 0.136 0.642 0.462 0.211
UniFormer[16] 0.695 0.544 0.316 0.661 0.378 0.183 0.640 0.608 0.288

DeepBrainNet[1] 0.675 0.537 0.292 0.642 0.416 0.174 0.642 0.566 0.262
BLIP-2[14] 0.662 0.519 0.263 0.594 0.472 0.143 0.620 0.500 0.196

BrainSCK 0.701 0.549 0.327 0.636 0.454 0.187 0.650 0.603 0.312

Fig. 3. Performance of BrainSCK using different ratios of training samples for diag-
nosing ADHD.

compared to BLIP-2[14] (assisted with BioMedLM for VQA) without domain
data and knowledge pretraining. Moreover, our method outperforms other meth-
ods, including UniFormer [16] and Med3D [3] from general vision and medical
fields which are based solely on vision information (T1), as well as deep brain
network transferred from brain age prediction[1], across most of the evaluation
metrics. Note the absolute levels of metrics are not high. We attribute this to
the multi-site effects in ADHD and ASD data, the difficulty of MCI diagnosis,
and the limited pre-training data size.

To demonstrate the potential of our method under small-sample conditions,
we further evaluate the performance of BrainSCK using different ratios of train-
ing samples (from 10% to 70%) for ADHD diagnosis. Only F1 and κ values are
shown due to the imbalanced classifications. In Fig. 3, we can observe that uti-
lizing 30% of the samples leads to notable improvement of approximately 0.12
and 0.09 in F1 and κ values, respectively, compared to using only 10% of the
samples. As the number of training samples continues to increase, the model’s
performance gradually approaches the one achieved with the entire training set.
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Remarkably, even when utilizing only 30% of the training samples, our method
surpasses the performance of BLIP-2 using all available training samples.

4.2 Ablation study

In Table 2, we change the configuration in pretraining and instruction tuning
and re-perform the ADHD identification using 30% training data to assess the
effectiveness of our design. Firstly, in the pre-training stage, we remove either
HCP-D or HCP-A to highlight the importance of using life-span training data.
It can be observed that both data removal results in a decrease in F1-score
and κ, indicating that comprehensive learning of life-span brain changes, rather
than solely focusing on early-age development, contributes to the identification
of ADHD. Secondly, we get rid of the cognitive function descriptions from the
knowledge-injecting prompt. As a consequence, both F1 and κ are remarkably
undermined. This supports the cognitive function descriptions as one of the core
designs in the knowledge-injecting prompt. Additionally, the instruction content
is modified. Removing either demographic information or disease symptom de-
scription from the instruction undermines the diagnosis performance reflected in
all metrics, highlighting the significance of the entire design of the knowledge-
reactivating instruction. Lastly, we observe that BioMedLM is a better choice
for BrainSCK than FLAN-T5, emphasizing the importance of medical domain
training.

Table 2. Ablation experimental results on the ADHD-200 dataset under different
settings.

Setting Option F1 κ

HCP Dataset
w/o HCP-D 0.454 0.202
w/o HCP-A 0.521 0.237

Prompt w/o cognitive function description 0.508 0.209

Instruction
w/o age, gender 0.486 0.205

w/o typical symptoms 0.477 0.197

Language Model FLAN-T5 0.306 0.047

Proposed BrainSCK 0.539 0.276

5 Conclusion

We propose a novel two-stage vision-language training framework for multiple
BD diagnosis. Our design of knowledge-injecting prompts contributes to the
alignment between brain structural features and cognitive functions. The pro-
posed knowledge-reactivating instruction enhances the connection between the
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learned knowledge about cognition and the BD cognitive symptoms, facilitat-
ing the diagnosis. Our framework demonstrates superior diagnostic accuracy for
ASD, ADHD, and early-stage AD compared to state-of-the-art methods, even
under limited fine-tuning data. In general, our work bridges foundation model,
cognitive neuroscience, and clinical studies and offers a promising tool for the
diagnosis of a broad spectrum of BDs throughout the human lifespan. The pro-
posed method is currently preliminary, and the performance is limited by training
sample size and sub-optimal prompt design. We believe it has space for further
improvements and more comprehensive evaluations.
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