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Abstract. An objective and accurate emotion diagnostic reference is
vital to psychologists, especially when dealing with patients who are dif-
ficult to communicate with for pathological reasons. Nevertheless, current
systems based on Electroencephalography (EEG) data utilized for senti-
ment discrimination have some problems, including excessive model com-
plexity, mediocre accuracy, and limited interpretability. Consequently, we
propose a novel and effective feature fusion mechanism named Mutual-
Cross-Attention (MCA). Combining with a specially customized 3D Con-
volutional Neural Network (3D-CNN), this purely mathematical mech-
anism adeptly discovers the complementary relationship between time-
domain and frequency-domain features in EEG data. Furthermore, the
new designed Channel-PSD-DE 3D feature also contributes to the high
performance. The proposed method eventually achieves 99.49% (va-
lence) and 99.30% (arousal) accuracy on DEAP dataset. Our code
and data is open-sourced at https://github.com/ztony0712/MCA.

Keywords: Emotion Recognition · Attention Feature Fusion · 3D-CNN
· EEG Feature.

1 Introduction

Autism and depression are serious psychological problem, potentially leading to
detrimental outcomes. A recent study indicated that dysarthria, mood disor-
ders, rumination, literal understanding of problems or communication difficul-
ties make their assessment difficult [3]. Therefore, it is essential for psychological
therapist to examine more reliable indicators such as EEG data from patients.
By promptly integrating the emotion judgements derived from these signals into
the diagnostic process, psychologists are better equipped to formulate tailored
treatment strategies for their patients.

In recent years, the academic community has achieved some advances in
emotion recognition through various methods [2,10,16]. Initially, the focus was
on singular traditional EEG features, such as Differential Entropy (DE) [17] and
Power Spectral Density (PSD) [1]. Subsequently, approaches involving feature
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fusion and deep learning were adopted to enhance recognition accuracy. With the
application of these new technologies, the performance of the classifier has been
improved, but there are still some problems. Currently, the mainstream fusion
methods implemented different learnable models to extract feature mappings,
and then concatenated them directly [8,7,4,13]. Some projects [16,2] appended
extra neural networks to further process the feature mappings. These strategies,
which train the networks to autonomously concentrate on significant aspects of
the signal, escalates the burden of model training and diminishes the efficiency
of the model’s outputs. Considering that sentiment classification systems require
instantaneous output in practical applications, current increasingly complicated
neural networks are not beneficial. In addition, this is not conducive to the
interpretability of the task, potentially resulting in moral hazards.

Furthermore, the latest study [6] indicated an emerging trend of utilizing
3D data inputs for models. The review identified two predominant structures of
Channel-Time-Frame [10] and Channel-Topology-Time [15]. However, the final
results were unsatisfactory. As shown in Table 4, the accuracy of 2D-Topology-
DE structure of Yang et al. [18] is only 90.24%, which could be the SOTA 3D
input feature structure of the other projects that use 3D-CNN network mod-
els. Our analysis suggests that the limited spatial information provided by the
channel topology map may contribute to this situation.

In that case, to achieve an instant well-performing emotion justification sys-
tem based on EEG analysis, this project introduces a novel solution that has
been experimentally validated as the new state-of-the-art (SOTA) method. It
encompasses two primary contributions:

Mutual-Cross-Attention Mechanism. Inspired by the self-attention mech-
anism proposed by Vaswani et al. [14], we introduce a purely mathematical
method named Mutual-Cross-Attention (MCA) for it applies Attention Mecha-
nism from each directions of two features. In the field of EEG emotion analysis,
we are the first to propose a pure mathematical fusion method, coupled with
customized 3D-CNN, to accomplish the task of feature fusion.

New 3D feature presentation. By analyzing existing projects, it is found that
spectral information might be more prominent than spacial information (pre-
sented by channel topology). Hence, we develop a unique Channel-Frequency-
Time 3D feature structure. This innovative feature presents spectral and tem-
poral information simultaneously.

2 Methods

To evaluate the proposed MCA, we designed a complete experimental pipeline
with five steps: Data Acquisition, Pre-process, Feature Extraction, Feature Fu-
sion, and Classification. In terms of the feature fusing procedure, the comple-
mentarity between multiple features and the ability of the fusion mechanism to
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find important information are both crucial. Finding the optimal combination is
challenging. It is widely recognized that DE and PSD complement each other [9].
Hence, these two features are selected for further feature fusion research. The
accuracy results, based on the Circumplex Model of Affect that concentrates on
arousal and valence, are compared with other SOTA methods to demonstrate
the validity of our methodology

2.1 Data acquisition

The DEAP dataset from Queen Mary University was selected for our experimen-
tal setup. In the study, 32 individuals were monitored using electroencephalo-
gram (EEG) and peripheral physiological signals as they viewed 40 one-minute
music video clips. Thus, the chosen data is cross-individual and cross-session.
Participants rated each video on a scale of 1 to 9 in terms of arousal, valence,
likeability, dominance, and familiarity [5]. The data acquisition equipment has
32 channels and work with 512 Hz sampling frequency.

2.2 Pre-process

The dataset is pre-processed guided by the well-known steps of Steve Luck [9].
It is cleaned by filtering wave and excluding noise components. Firstly, Notch
Filter is implemented to eliminate 50 Hz signal, commonly associated with in-
terference from AC power sources. Additionally, considering measurement tool
inaccuracies and environmental interferences, a 4-45 Hz band-pass filter is set.
Following this, Independent Component Analysis (ICA) is applied to the fil-
tered EEG to cancel noise elements like Electrooculogram, Electrocardiogram,
Electromyography. The final step involved downsampling the original 512 Hz
data to 128 Hz. These operations improve data quality, reduce data volume, and
accelerate computation speed.

2.3 Feature extraction

The DE and PSD extractions are adopted across five distinct frequency bands
to enhance feature representation and prevent information from influencing each
other. The categories include θ (4-7 Hz), α (8-10 Hz), slow α (8-13 Hz), β (14-29
Hz), and γ (30-45 Hz).

DE extraction. There are several methods to calculate DE. If the signal fits
the Gaussian distribution, which is performed as N(µ, ϵ2). The mathematical
formulation is equal to the following one:
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Fig. 1. PSD diagram of subject 01.

where ϵ is the standard deviation of f(x). It has been proven that the EEG
data filtered by a 4-45 or similar band-pass filter fits a Gaussian distribution
every 2 Hz [11]. The formulation is applied every 2 seconds of data. Then these
segments of DEs are collected and constructed as a DE trial array. Finally, the
band-pass filter is applied to consider the DE feature separately according to
that 5 different frequency bands mentioned in Sect. 2.3.

PSD extraction. The Welch’s method is used to extract power spectra density
(PSD). The first step to acquiring the PSD value is dividing the whole signal
into K batches and calculating for each of them. The mathematical presentation
of the kth PSD value on frequency f is [12]:

pk(f) =
1

W
|Fk(f)|2 (2)

where W is related to the Hanning window and Fk(f) is a windowed fast
Fourier transform (FFT) at a specific frequency f , which is set as 128 Hz accord-
ing to the analysis above. The window size is 2 seconds. Finally, the estimation
of PSD with the Welch method is combined with the results from all segments:

Ps(f) =
1

K

K∑
k=1

pk(f) (3)

To preliminarily evaluate the validity of the PSD, a corresponding diagram
is plotted. Fig. 1 indicates that the local value of the PSD fluctuates in the
frequency range of about 5-7 Hz and 9-11 Hz, which suggests there might be
emotion presentation in these ranges. That is the reason for the Sect. 2.3 indi-
cating two frequency bands (slow α and α) in 8-13 Hz range. Finally, the PSD’s
4-45 Hz spectrum is categorically divided into five bands for further analysis.

2.4 Feature fusion

The MCA mechanism is applied across each selected frequency band to fuse
DE and PSD. Initially, respectively consider DE and PSD as key and query



Feature Fusion Based on MCA Mechanism for EEG Emotion Recognition 5

Fig. 2. Overview of mutual-cross-attention mechanism.

vector. Then, designate PSD as value and implement basic Scaled Dot-Product
Attention, which is presented by:

Atten(Q,K, V ) = softmax
(
QKT

√
dk

)
V (4)

where Q, K, V respectively represent query, key, and value. And dk is the
size of the query’s last dimension.

That is one direction calculation in MCA. After that, PSD is used as Q, DE
as K and V. Again, the Scaled Dot-Product Attention operation is implemented.
The results from both directions are added together to get the new feature. Fig. 2
illustrates the entire process, and its mathematical presentation is:

MCA(f1, f2) = Atten(f1, f2, f2) + Atten(f2, f1, f1) (5)

where f1 is the first feature (DE) and f2 is the second feature (PSD).

2.5 Classification

After those feature extraction operations are implemented, the final single fea-
ture is denoted as Ff ∈ IR32×5×60. However, it takes too long to perform classi-
fication tasks. Therefore, every Ff is split into 20 Fs ∈ IR32×5×3. This operation
allows the model to output a sentiment prediction every 3 seconds.

A special 3D-CNN structure is proposed to process the feature Fs . As shown
in Fig. 3, the network begins with a 3D convolutional layer, configured with one
input channel and 32 output channels, utilizing a 3x3x3 kernel. This layer is
followed by another 3D convolutional layer, which maintains the same number
of output channels and kernel size. Using two consecutive convolutional layers
with the same number of channels enhances the network. The trick deepens the
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Fig. 3. Structure of new designed 3D-CNN.

network’s capacity to extract features without immediately reducing the spatial
dimensions of the input data. After the initial convolutional stage, a 2x2x2 kernel
Max Pooling layer is employed with a (0, 1, 1) asymmetric padding.

Subsequently, the network extends into another set of convolutional layers,
where the number of output channels is doubled to 64. Following this, the second
Max Pooling layer further downsamples the feature maps. Finally, the network
transitions to a fully connected layer, which classifies the extracted features into
two categories.

2.6 Experiments setup

During the training phase, the hyperparameters are tuned to optimize model
performance. Firstly, a test set randomly containing 10 percent of total dataset
is split out. Then, the optimal hyperparameters are listed: Adam optimizer, 32
batch size, 12 epochs, 0.0001 weight decay, 0.0002 learning rate, and scheduler
that reduces the learning rate by 0.2 every 10 epochs. For hardware, we used
two NVIDIA GeForce RTX 3090 GPUs. The GPU driver version is 525.147.05
and the CUDA version is 12.0. The CPU is a AMD Ryzen Threadripper 3960X
24-Core Processor. However, a single RTX 3060 GPU is also enough.

3 Results and discussions

The performance of the proposed model is demonstrated through various eval-
uation metrics as detailed in Table 1. It is clear that all indices exceed 99%.
Additionally, this section includes not only ablation experiments but also com-
parisons with other SOTA results. All these experiments and comparisons are
conducted using the DEAP dataset. Ultimately, the proposed methodology is
proven to be effective.
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Table 1. Valence and arousal evaluation metrics of MCA-3D-CNN.

Category Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Valence 99.49 99.60 99.54 99.57
Arousal 99.30 99.45 99.31 99.38

3.1 Ablation experiments

The experiment primarily examines the impact of both singular and fused fea-
tures on the results. For comparison with our proposed MCA method, a baseline
configuration labeled "DE+PSD" is established, which is based on the summa-
tion of 3D-DE and 3D-PSD. According to the Table 2, the accuracy results for
single DE and single PSD are almost the same to those of "DE+PSD". How-
ever, the valence at 99.49% and arousal at 99.30% achieved by the proposed
method are significantly higher than those of "DE+PSD". This proves that the
proposed method has advantages in the complementary integration of DE and
PSD information.

Table 2. Ablation experiments results. "DE+PSD" represents the element-wise sum-
mation between 3D-DE and 3D-PSD.

Feature Valence(%) Arousal(%)
Channel-Frequency-DE 89.88 88.16
Channel-PSD-Time 91.88 91.56
DE+PSD(baseline) 90.90 91.30
Proposed MCA 99.49 99.30

3.2 Compare with other SOTA

The innovation of this project focuses mainly on the design of the new feature
structure and the way of fusing the new features. Hence, the comparisons with
other SOTA methods in these two aspects are carried out.

Table 3. Compare with results based on other fusion methods.

Features Fusion Method(s) Valence(%) Arousal(%)
ResNet, LFCC Concat & KNN [8] 90.39 89.06
DE, PSD, Hjorth, SE CNN & SVM [2] 75.22 80.52
PSD, temporal statistics STFFNN [16] 85.40 86.20
Time, 2D-Topology-Time TSFFN [13] 98.27 98.53
DE, PSD MCA & 3D-CNN (Ours) 99.49 99.30
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Feature fusion comparison. There are various other fusion methods between
different features as detailed in Table 3. Gao et al. [2] integrated DE, PSD,
Hjorth, and Sample Entropy (SE). Our project, however, utilizes a narrower
range of features. Additionally, similar to the work [16], our project fuses both
frequency domain and time domain features. This demonstrates that our pro-
posed method is effective when working with similar features, whether they are
the same or fewer in categories.

In the study by Liu et al. [8], the accuracy results are around 90%, show-
ing commendable performance. However, their approach relies on pre-trained
features, which might limit its ability to instantly output results compared to
our proposed method. Sun et al. [13] developed TSFFN to fuse EEG features
with high accuracy. Comprising a 3D-CNN and a transformer, the TSFFN might
be too complex for efficient computation. This highlights the advantages of our
proposed purely mathematical MCA to feature fusion.

Table 4. Compare with results based on other singular 3D feature presentations.

Feature Network Valence(%) Arousal(%)
2D-Topology-DE [18] 3D-CNN 89.78 90.24
2D-Topology-Time [15] 3D-CNN 72.10 73.10
Channel-Time-Frame [10] 3D-CNN 87.44 88.49
Channel-Frequency-DE (Ours) 3D-CNN 89.88 88.16
Channel-PSD-Time (Ours) 3D-CNN 91.88 91.56

Feature structure comparison. For 3D feature presentations, the majority
of emotion recognition projects based on EEG analysis have inclined towards
using topology to expand a 1D channel into a 2D format. Subsequently, data on
other dimensions are combined with the topological channel map. As indicated
in Table 4, the performance of our proposed feature structure outperforms all
3D-CNN methods that employ features of the topology and the Channel-Time-
Frame. This validates the rationality and effectiveness of the structure we have
designed.

4 Conclusion

The proposed MCA mechanism, 3D feature Channel-PSD-DE, and customized
3D-CNN show excellent capabilities in EEG-based emotion recognition. The
whole system effectively overcomes the limitations of existing systems in terms
of instantaneity, accuracy, and interpretability. By integrating DE and PSD fea-
tures through the MCA mechanism, the ability of mathematical fusion methods
to extract meaningful information from EEG data is highlighted. The emotional
discrimination system developed using this solution has great potential for prac-
tical clinical psychotherapy. In the future, we will further explore the transformer
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implementing MCA as a core, which could fuse features of larger and more com-
plex datasets.
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