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Abstract. The scarcity of data in medical image classification using
deep learning often leads to overfitting the training data. Research indi-
cates that self-distillation techniques, particularly those employing mean
teacher ensembling, can alleviate this issue. However, directly transfer-
ring knowledge distillation (KD) from computer vision to medical image
classification yields subpar results due to higher intra-class variance and
class imbalance in medical images. This can cause supervised and con-
trastive learning-based solutions to become biased towards the majority
class, resulting in misclassification. To address this, we propose UDCD,
an uncertainty-driven contrastive learning-based self-distillation frame-
work that regulates the transfer of contrastive and supervised knowledge,
ensuring only relevant knowledge is transferred from the teacher to the
student for fine-grained knowledge transfer. By controlling the outcome
of the transferable contrastive and teacher’s supervised knowledge based
on confidence levels, our framework better classifies images under higher
intra- and inter-relation constraints with class imbalance raised due to
data scarcity, distilling only useful knowledge to the student. Extensive
experiments conducted on benchmark datasets such as HAM10000 and
APTOS validate the superiority of our proposed method. The code is
available at https://github.com/philsaurabh/UDCD_MICCAI.

Keywords: Medical Image Classification · Knowledge Distillation · Un-
certainty · Contrastive Learning · Relational Knowledge.

1 Introduction and Background

Recent advances in deep learning have significantly enhanced medical image
analysis for computer-aided diagnosis (CAD). Convolutional Neural Networks
(CNNs) have become pivotal tools due to their robust feature extraction and
classification capabilities, particularly in CAD [21]. However, challenges like data
privacy and limited availability often lead CNN to overfit. Knowledge Distillation
(KD) [3], involving the regularization of a shallow model with knowledge from
a more complex teacher model [11, 23, 15, 17], has shown promise in enhancing
diagnostic accuracy in medical image analysis [21, 10, 19] among other prevalent
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methods. Among KD techniques, the self-ensembling mean-teacher paradigm
has emerged as a leading methodology, offering heightened generalizability even
in data-scarce settings [8]. Nonetheless, challenges persist due to high inter-
class resemblance, intra-class variance, and class imbalances in medical image
datasets, which can confound differentiation and predispose models to overfit.

Recent research efforts aimed at addressing classification challenges have de-
ployed various strategies, including distillation of inter-batch relationships [10],
contrastive knowledge preservation [21], and relational knowledge augmenta-
tion [19]. These advancements have leveraged contrastive knowledge [21] and
relational self-supervision [19]. However, challenges persist for majority classes,
where significant class imbalances in positive samples can lead to divergent be-
havior, particularly evident in [21] where learning may slow down due to the
high fraction of positive samples. Additionally, self-supervised learning methods
[19, 22] face difficulties in scenarios characterized by high inter-class similarity
and the absence of explicit class labels during training, making them susceptible
to misclassification. This vulnerability stems from the inherent nature of self-
supervised learning, which does not utilize explicit class labels during training
[18, 7].

To address the outlined challenges, we introduce UDCD, an Uncertainty-
Driven Contrastive Self-Distillation framework. UDCD leverages the mean-teacher
method for self-distillation, controlling knowledge transfer based on the confi-
dence levels of the teacher model’s predictions. It utilizes Supervised Contrastive
Relation Matrices to extract supervised contrastive learning from both models,
transferring this knowledge with a weighting contingent upon the teacher’s con-
fidence in each prediction. Integrating uncertainty as a measure of confidence
enhances label exploitation and facilitates pertinent knowledge transfer, thereby
improving model performance in both inter and intra-class relationships. Addi-
tionally, UDCD incorporates relational knowledge among contrastive relations,
emphasizing relative distances among learned representations of each class rather
than distribution gaps. This approach reduces the model’s reliance on dataset
characteristics during the knowledge transfer phase, bolstering its resilience and
generalizability. The proposed UDCD framework contributes significantly by (1)
Introducing the extraction of Contrastive Relation Matrices, which contain su-
pervised contrastive learning-based discriminative features crucial and more ef-
fective for distinguishing examples across different classes. (2) Proposing a novel
Uncertainty-Driven Contrastive Distillation mechanism between the contrastive
predictions of the student and a mean teacher model, facilitating the transfer
of relevant information while mitigating biased learning. (3) Replacing distribu-
tion gap-based knowledge distillation with relative knowledge transfer between
the teacher’s and student’s supervised contrastive knowledge, thereby reducing
dependency on dataset characteristics and addressing class imbalance more ef-
ficiently. Our methodology undergoes thorough evaluation on two prominent
datasets, APTOS [6], and HAM10000 [16, 1]. Through comprehensive analysis,
our proposed approach demonstrates a performance superiority ranging from
5% to 11% compared to state-of-the-art techniques across various performance



Title Suppressed Due to Excessive Length 3

metrics, particularly excelling in scenarios marked by class imbalance, high inter-
class similarity, and intra-class variance. Also, our method maintains robust per-
formance even with increasing class numbers and remains effective in scenarios
with limited data availability.

2 Methodology

The UDCD framework, depicted in Fig. 1, introduces a student model and a
mean-teacher model for optimization. Stochastic gradient descent optimizes the
student model, while the teacher weights ω′ are updated using exponential mov-
ing average (EMA) based on the student weights ω. Image augmentation yields
two distinct images, xs and xt, each undergoing different perturbations. The stu-
dent and teacher models extract feature representations zs and zt and predict
output probabilities ps and pt, respectively. Supervised by weighted cross-entropy
loss LWCE and KL divergence [3] LKL with respect to pt, the student’s predic-
tion ps ensures consistency with the teacher. Structural information alignment
is enforced using the LSCL loss, extracting supervised contrastive discriminative
features. Additionally, a Contrastive Relation Matrix (CRM) C(xs) (C(xt)) is
formed for each model, and the LCRA loss aligns these CRMs between the teacher
and student models. The supplementary material provides further details on the
algorithm.
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Fig. 1: Proposed UDCD Framework, where directions of the arrows show the
flow of the framework from input to output(Dashed Maroon lines denote the
back-propagation).
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2.1 Contrastive Knowledge Extraction

Our study diverges from recent methods such as CRCKD [21] and SSDKD [19]
due to observed limitations regarding erratic behavior stemming from the scarcity
or abundance of positive samples. Instead, it focuses on traditional supervised
contrastive learning (SCL) [7] integrated with knowledge distillation. SCL en-
hances contrastive prediction accuracy by incorporating label information along-
side samples. The methodology involves applying diverse augmentations to an
image, processing it through both teacher and student encoders, and passing
it through projection layers for linear transformation. This yields contrastive
projection embeddings zt and zs, normalized to the unit hypersphere via L2
normalization. These embeddings serve two purposes: extracting predictions and
distilling logits via KL-Divergence loss [3] and deriving supervised contrastive
discriminative features for contrastive knowledge transfer to regularize the con-
sistency of structural knowledge between the teacher and student by enhancing
intra-class similarity and inter-class divergence. Inspired by previous work, SCL
loss for the teacher and student models, denoted as L(t)

SCL and L(s)
SCL, is defined

as follows:

L
(t)
SCL =

∑
i∈I

L
(t)
SCL,i =

−1

|P (i)|
∑

p∈P (i)

log
ezt(i)·zp/τ∑

k∈Ks(i)
ezt(i)·zk/τ

, (1)

L
(s)
SCL =

∑
i∈I

L
(s)
SCL,i =

−1

|P (i)|
∑

p∈P (i)

log
ezs(i)·zp/τ∑

k∈Kt(i)
ezs(i)·zk/τ

. (2)

In this formulation, i ∈ I = {1, 2, . . . , 2N} denotes the index of an augmented
sample, where z(i) represents its embedding, and P (i) denotes the set of indices
of all positive samples in the multi-viewed batch concerning the ith sample, with
|P (i)| indicating its cardinality. To access a large sample of negative examples
for improved contrastive learning, as suggested in prior works, we adopt the
approach of [20] to construct a memory bank M ∈ Rb×d that stores the d-
dimensional embeddings of all b training images in a batch (Ms for the student
model, Mt for the teacher model). Additionally, Kt(i) and Ks(i) represent the
set of all negative samples relative to the ith sample in the teacher’s and student’s
memory, respectively. Here, τ denotes the temperature constant.

2.2 Categorical Relation Alignment

To address potential class bias resulting from high class imbalance in supervised
contrastive learning, we introduce relational alignment between contrastive fea-
tures. Unlike CRCKD [21], which focuses on distribution learning, our approach
aims to align categorical relations by optimizing the relative distance between
category representations of teacher and student models using Huber loss [5].
Each class is represented by a single anchor, irrespective of the number of im-
ages in that class, mitigating bias induced by class imbalance, similar to the
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approach in [21]. To extract the Contrastive Relation Matrix (CRM), we utilize
supervised contrastive embeddings and class embeddings from the memory for
each batch. The memory matrix has dimensions n×f (where n is the number of
classes and f is the size of the projection head embedding), and for each batch
of size b, we obtain a matrix of dimensions b×f . Anchors are extracted following
the approach proposed in [21], aggregating the ith class sample to obtain the ith
class anchors. Next, we calculate the contrastive relation to create a Categori-
cal Relation Matrix (CRM) using the similarity of each image projection after
applying softmax in a batch, as follows:

As(i) =
1

|A(i)|
∑

ms∈A(i)

ms, R(xs, As(i)) =
ezs(i)·As(i)∑n
i=1 e

zs(i)·As(i)
(3)

Here, |A(i)| denotes the number of samples of the ith class. We do the same with
the teacher to get A(i) and R(xt, As(i)).

Next, for each triplet (p, q, r) ∈ xs for the student and ∈ xt for the teacher,
we calculate the relational unit vector as follows.

Rpq(i) =
R(p,A(i))−R(q, A(i))

∥R(p,A(i))−R(q, A(i))∥2
, and Rpr(i) =

R(p,A(i))−R(r,A(i))

∥R(p,A(i))−R(r,A(i))∥2
.

(4)
Finally, we calculate the Categorical Relational Alignment (CRA) loss LCRA as
follows:

LCRA =
∑

(p,q.r)∈x

δ(ϕ(Rt
pq(i), R

t
pr(i)), ϕ(R

s
pq(i), R

s
pr(i))). (5)

Here, Rs and Rt represent the relation units for the teacher and student, re-
spectively, while ϕ and δ denote the distance functions. It is advisable to employ
Huber loss for these functions.

2.3 Uncertainty Driven Learning Task

To estimate confidence, we utilize uncertainty as a metric [9]. Two types of
confidence measures are considered: 1) Teacher’s confidence, computed during
knowledge transfer from the Contrastive Relation Matrix (CRM) using LCRA,
and 2) Self-confidence, which regulates the student’s own contrastive learning
to minimize bias towards irrelevant majority class learning. The aim is to en-
courage the student to rely more on the traditional learning approach when the
teacher exhibits less confidence in some examples and also when the student’s
contrastive learning adversely affects its performance. For each data sample x,
the probability distribution of the output class with respect to the class label y
for the student version is computed as P (y|x) = softmax(S(x)). The prediction
uncertainty, for instance, x, is determined by:

u(x) = Entropy(softmax (S(x))) = −
∑

y P (y|x) logP (y|x). (6)
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We introduce two learnable confidence parameters, ψ1 and ψ2, as follows (for
teacher and student ψt and ψs are used respectively):

ψ1 =
u(x)

U
,ψ2 = 1− u(x)

U
, (7)

where U is the factor utilized to normalize the weight to the range [0, 1]. Con-
sidering it, for the overall learning process, our method operates as follows:

L = (1 + ψs
2 + ψt

2)LWCE + λ1.LKL + ψt
1.λ2.L

(S)
SCL + ψt

1.λ3.LCRA (8)

In this context, LWCE represents weighted cross-entropy, where each class’s
weight is inversely proportional to its cardinality. LKL denotes the traditional
KL-divergence loss [3], and λ1 to λ3 are the corresponding hyperparameters.
During testing, both the mean teacher and the projection heads are omitted,
ensuring that the inference time matches that of the vanilla student model.

3 Experiments and Results

3.1 Experimental Settings

We leverage two widely recognized datasets, APTOS [6] and HAM10000 [16],
drawing insights from previous studies [21, 19], to conduct a comparative analy-
sis. Our evaluation encompasses accuracy (ACC), F1-score, balanced mean ac-
curacy (BMA), recall (REC), and mean average precision (AP) metrics against
existing baselines. We explore four distinct scenarios to assess the efficacy of
UDSD: (i) its impact on inter and intra-class relations, (ii) its performance in
addressing class imbalance, (iii) its effectiveness compared to state-of-the-art KD
methods, and (iv) its performance under conditions of data scarcity. Using the
Densenet architecture for both teacher and student models, we also investigate
UDCD’s effectiveness with various backbone networks, maintaining methodolog-
ical consistency with established settings in the literature [21, 19].

3.2 Analysis on Inter and Intra Class Relations with class imbalance

To evaluate the effectiveness of UDCD across different challenges, we utilize two
datasets: the APTOS dataset for examining inter-class similarity and intra-class
variance and the HAM10000 dataset for assessing performance under high class
imbalance. For inter-class similarity and intra-class variance analysis on the AP-
TOS dataset, t-SNE plots are employed, comparing UDCD with medical image-
specific baselines CRCKD and SSD-KD [21, 19]. Notably, UDCD demonstrates
significant separation in class-wise clusters, particularly excelling in capturing
distinct patterns and discriminating minority class outliers as shown in Fig. 2.
This proficiency is attributed to confidence-based knowledge transfer, enhancing
precise class discrimination. Regarding high class imbalance evaluation on the
HAM10000 dataset, various samples with different distributions are generated,
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and four variations are implemented to comprehensively examine the impact
on model performance using different learning mechanisms. The examination of
results in Table 1 indicates a significant improvement in UDCD’s methodology
over the nearest-performing baseline concerning class imbalance (2-5% in accu-
racy and 1-11% in AP for different cases), possibly due to the extraction and
transfer of dark knowledge [22] facilitated by contrastive learning in UDCD.

(a) Original Data (b) CRCKD (c) SSD-KD (d) UDCD

Fig. 2: t-SNE plots for the APTOS dataset using different training techniques,
where the data points of each class are shown in different colors.

Table 1: Results on HAM10000 dataset with different data distributions. Bold
and Underline represents the best and second-best results respectively.

Methods↓
ρ = 144 (Severe Class Imbalance) ρ = 58 (Original Data)

ACC(%) AP(%) REC(%) F1(%) ACC(%) AP(%) REC(%) F1(%)
KD [3] 86.56 77.43 71.53 74.36 85.05 74.20 74.62 74.41
SCL-IKD [14] 86.12 78.23 72.64 75.33 85.69 74.91 71.68 75.30
CRCKD [21] 88.11 81.46 76.17 76.29 85.90 76.55 76.63 76.59
SSD-KD [19] 79.23 61.87 74.40 67.56 85.42 73.20 87.04 79.52
UDCD 90.24 87.84 75.90 79.68 90.28 85.12 82.91 83.83

Methods↓
ρ = 17 (Less Class Imbalance) ρ = 9 (Very less Class Imbalance)

ACC(%) AP(%) REC(%) F1(%) ACC(%) AP(%) REC(%) F1(%)
KD [3] 76.07 60.95 71.95 65.99 75.21 66.57 77.12 71.54
SCL-IKD [14] 76.69 61.01 70.70 65.50 74.30 66.09 78.82 71.90
CRCKD [21] 78.88 60.03 78.55 66.33 74.43 66.33 83.37 72.12
SSD-KD [19] 79.08 60.58 73.95 66.60 81.92 68.71 77.15 72.96
UDCD 81.60 72.89 80.36 70.57 84.04 69.66 78.12 72.57

3.3 Other Analyses and studies

We evaluate the effectiveness of UDCD by conducting a comparative analysis
with state-of-the-art knowledge distillation methods customized to tackle the
aforementioned challenges, employing Densenet121. The outcomes of this eval-
uation, presented in Table 2, reveal UDCD’s significant margin of superiority
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(up to 11% gain in precision) over existing baselines owing to its unique learning
mechanism. Additionally, we assess the effectiveness of UDCD in addressing data
scarcity, particularly in real-world medical datasets like skin lesion classification
(Additional visualizations are presented in the supplementary). Figure 3a demon-
strates UDCD’s superior performance even under significant data scarcity, possi-
bly attributed to relational knowledge transfer with confidence-based knowledge
transfer. Furthermore, Figure 3b presents an ablation study highlighting the sig-
nificance of all components. Additionally, Figure 3c compares the performance
of various backbone networks with recent relevant methods CRCKD [21] and
SSD-KD [19], which shows significant improvement in F1-score for all differ-
ent backbones including Resnet50 [2], Efficientnet [12], Mobilenet [13], etc for
APTOS dataset.

Table 2: Performance comparison of baselines to the UDCD framework. Bold
and Underline represent the best and second-best results respectively.

Methods↓
APTOS [6] HAM10000 [16]

ACC(%) AP(%) REC(%) F1(%) ACC(%) AP(%) REC(%) F1(%)
Scratch [4] 83.13 70.34 68.16 69.10 84.31 74.18 72.21 72.56
MTG 83.01 70.07 68.59 69.76 85.05 74.20 76.09 74.41
RKD [11] 83.77 71.30 71.26 70.89 88.72 79.60 80.26 79.47
SSKD [22] 83.49 71.15 71.53 71.25 84.42 74.99 85.95 79.68
CRCKD [21] 84.07 71.93 71.49 71.45 85.90 76.55 78.17 76.59
CRD [15] 84.09 71.75 69.30 70.22 85.35 74.43 76.45 74.81
SCL-IKD [14] 80.45 71.25 68.43 67.74 85.58 74.89 77.68 75.48
SSD-KD [19] 84.53 71.55 72.90 70.99 85.42 73.20 85.57 79.52
UDCD 85.01 73.38 71.42 71.31 90.28 85.12 82.91 83.83

(a) Few Shot Analysis (b) Ablation Study (c) Backbone Analysis

Fig. 3: Figures for other analyses and studies.

4 Conclusion

This paper introduces the Uncertainty-driven Contrastive Self-Distillation (UDCD)
framework tailored for medical image classification, addressing challenges such
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as high inter-class similarity and class imbalance. Three key innovations are pro-
posed: 1) Contrastive Relation Matrix (CRM) for efficient contrastive feature
extraction, 2) Relational Alignment for effective handling of data imbalance,
and 3) Uncertainty-driven Supervised Contrastive Knowledge Transfer, mitigat-
ing irrelevant knowledge propagation from both student and teacher models.
These innovations facilitate the distillation of rich structural knowledge from
the mean-teacher model. Experimental evaluations on the HAM10000 [16] and
APTOS [6] datasets demonstrate the superior effectiveness of UDCD compared
to other knowledge distillation paradigms. While UDCD primarily focuses on
image classification, its ability in other paradigms like NLP remains unexplored,
and we leave this as a future scope for research.
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