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Abstract. Learning to segment multiple organs from partially labeled
datasets can significantly reduce the burden of manual annotations. How-
ever, due to the large domain gap, learning from partially labeled datasets
of different modalities has not been well addressed. In addition, the
anatomic prior knowledge of various organs is spread in multiple datasets
and needs to be more effectively utilized. This work proposes a novel
framework for learning to segment multiple organs from multimodal par-
tially labeled datasets (i.e., CT and MRI). Specifically, our framework
constructs a cross-modal a priori atlas from training data, which im-
plicitly contains prior knowledge of organ locations, shapes, and sizes.
Based on the atlas, three novel modules are proposed to address the
joint challenges of unlabeled organs and inter-modal domain gaps: 1) to
better utilize unlabeled organs for training, we propose an atlas-guided
pseudo-label refiner network to improve the quality of pseudo-labels; 2)
we propose an atlas-conditioned modality alignment network for cross-
modal alignment in the label space via adversarial training, forcing cross-
modal segmentations of organs labeled in a different modality to match
the atlas; and 3) to further align organ-specific semantics in the latent
space, we introduce modal-invariant class prototype anchoring modules
supervised by the refined pseudo-labels, encouraging domain-invariant
features for each organ. Extensive experiments demonstrate the superior
performance of our framework to existing state-of-the-art methods and
the efficacy of its components.

Keywords: Multimodal partial label · Multi-organ segmentation · Prob-
abilistic atlas.

1 Introduction

Accurate segmentation of various organs in medical images is valuable to clini-
cal applications. In clinical practice, multiple image modalities, e.g., computed
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Fig. 1. Illustration of multimodal partially labeled multi-organ segmentation. This task
aims to segment multiple organs in multiple modalities using a network trained on sev-
eral partially labeled datasets, each providing segmentations of one or a few particular
organs. While previous work explored partially labeled monomodal CT datasets (the
solid lines), this work aims to fulfill the more challenging multimodal task to include
MRI datasets (the dashed lines), another standard imaging modality in clinic routine.

tomography (CT) and magnetic resonance imaging (MRI), are commonly used
together to provide complementary perspectives [17, 18, 23]. Most research fo-
cused on designing optimal, modality-specific segmentation models for either of
them [2, 11]. However, these models often would yield suboptimal performance
when applied to the modality not originally used for training due to the large
domain gap, even though the content imaged by different modalities is the same.
Some work [8, 33] proposed to address the problem by training a single model
with joint representation learning/alignment in a unified latent space from multi-
modal datasets and achieved improved performance across modalities. However,
these methods required all organs of interest to be annotated in every modality,
which can be difficult and costly considering the expertise and labor needed.

Recently, researchers started to investigate using partially labeled datasets
(i.e., only a subset of all organs of interest is annotated in a specific image)
to train a model that could segment all organs of interest together. This can
significantly reduce the burden of manual annotation. Some studies [4, 6, 10, 27,
38] proposed adaptive and conditional loss functions and networks specifically
designed for partial-label training. Nevertheless, they ignored unlabeled organs
and treated them as background. Other works relied on pseudo-labels to train
on unlabeled organs [14, 26]. Zhou et al. [40] proposed a prior-aware neural net-
work (PaNN) that explicitly incorporated the anatomical prior of organ sizes.
However, these methods only considered the settings where monomodal datasets
were partially labeled for different tasks (i.e., monomodal multitask setting), and
their extension and efficacy in multimodal settings still needed to be studied.
Unsupervised domain adaptation (UDA) can narrow the gaps between differ-
ent domains [3, 9, 15, 29], often involving sophisticated feature disentanglement
and domain-invariant feature extraction [34, 35, 37]. The performance may drop
when the domain discrepancy is too large, especially for the cross-modal setting.

This paper proposes a novel framework for learning to segment multiple or-
gans from multimodal partially labeled datasets (Fig. 1). Above all, we construct
a cross-modal a priori probabilistic atlas [7, 13, 24] from training data, which im-
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plicitly contains rich prior knowledge about the organs, such as location, shape,
and size. The atlas is exploited by three novel modules to address the critical
challenges due to unlabeled organs and inter-modal domain gaps. First, to im-
prove the quality of pseudo-labels for unlabeled organs in multimodal settings,
we introduce an atlas-guided pseudo-label refiner network (APRN). The refined
pseudo-labels are used to supervise the training of the main segmentation net-
work so that the latter can better utilize valuable information from unlabeled
organs and mistreat them less as background. Second, we propose an atlas-
conditioned modality alignment network (AMAN) for cross-modal alignment
via adversarial training, where a discriminator judges whether a segmentation
is for an organ labeled in the current modality while the main segmentation
network is forced to produce cross-modal segmentations able to fool the discrim-
inator, both conditioned on the atlas. In this way, the cross-modal segmentation
is aligned with the atlas in the label space. Third, to further align organ-specific
semantics in the latent space, we introduce several modal-invariant class proto-
type anchoring modules (MICPAMs) into the decoder of the main segmentation
network. Supervised by the APRN-refined pseudo labels, MICPAMs anchor the
features of unlabeled organs in an image to the modal-invariant prototypes ex-
tracted from images in which these organs are labeled. Guided by the atlas,
our AMAN and MICPAM modules are expected to align different modalities of
significant domain gaps better than UDA. Extensive experiments demonstrate
(1) our framework’s superiority to existing state-of-the-art methods and (2) the
efficacy of its novel modules.

2 Method

Problem Setting. Consider a set of M unpaired, partially labeled datasets
{D(i)}Mi=1 of different modalities (e.g., CT and MRI) and segmentation tasks
(i.e., segmentation targets may vary with datasets). Further, each D(i) = {(x(i,j),
y(i,j))}Ni

j=1, where Ni is the number of images in D(i), x(i,j) ∈ RD×H×W is the
jth image in D(i), D, H and W are the depth, height, and width of the image,
respectively, y(i,j) ∈ {0, 1}|C

(i)|×D×H×W is the binary pixel-wise label of x(i,j),
C(i) is the set of labeled classes in D(i) (different organs), and |C(i)| is the number
of classes in C(i). Following existing literature [6, 10, 38], C(i) ∩ C(j) = ∅ for all
i ̸= j, which is the most challenging setting for partially labeled scenarios, and
the union set C = {C(i)}Mi=1 comprises all organs of interest to segment. The goal
is to learn a single model from {D(i)} to segment all classes in {C(i)} for any
modality in {D(i)}. Below, the superscripts i, j will be ignored without confusion.
Overview. Fig. 2 overviews our framework. As a premise, an a priori proba-
bilistic atlas α for all organs of interest is constructed from training data. In
each mini-batch, images are randomly sampled from {D} and fed into the main
segmentation network, yielding a prediction p for all organs. Then, the APRN re-
fines the prediction for unlabeled organs in each image (denoted by pC\C) guided
by the same organs in the atlas (denoted by αC\C), yielding refined pseudo-
labels ŷ to supervise the main segmentation network via Lpseudo. Meanwhile,
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Fig. 2. Overview of our framework. A CT image, in which the liver is labeled while
the spleen is not, is used for illustration.

the AMAN encourages the cross-modal segmentation of unlabeled organs pC\C
to harmonize with the atlas αC\C in the label space via Ladv. Last but not least,
several MICPAMs further align the features of unlabeled organs with a set of
modal-invariant anchors {ā1c}–{ā3c} in the latent space via Lproto.
Cross-modal a Priori Atlas Construction. As the data used in this study
primarily concern abdominal organs with roughly consistent fields of view, we
implement a straightforward pipeline for volumetric image alignment and atlas
construction from training data. First, we re-slice each image to the same reso-
lution of 2×1×1 mm3 and use Otsu thresholding [39] to identify and crop out
the foreground sub-volumes (i.e., abdominal torso) as preprocessing. Then, we
resize the foreground sub-volumes to a uniform size of 143×233×338 voxels, the
mean size of all training images after preprocessing. These steps roughly align
all the images in effect and are applied to the labels, too. Next, we average all
training labels of a specific class to obtain a class-wise a priori probabilistic at-
las. Finally, the class-wise atlases for all classes of interest are concatenated to
compose a cross-modal atlas α ∈ R|C|×143×233×338. Example atlases for the liver
and spleen (denoted by αC and αC\C , respectively) can be seen in Fig. 2.
Atlas-guided Pseudo-label Refiner Network (APRN). To utilize the un-
labeled organs of partially labeled datasets rather than misleadingly treating
them as background, a common solution is to adopt semi-supervised learning
with model-generated pseudo-labels for training [28]. However, due to the large
discrepancy between different modalities, the pseudo-labels may become highly
unreliable for data from another modality. Therefore, we propose the APRN
(Fig. 2), a lightweight U-shape network trained on labeled organs, to refine
the pseudo-labels for unlabeled organs guided by the atlas. Denote the after-
softmax probabilities predicted by the main segmentation network for an image
by p ∈ R|C|×D×H×W . We slice the prediction and the atlas to extract the sub-
tensors corresponding to the labeled organs (e.g., the liver labeled in the CT im-
age in Fig. 2), denoted by pC and αC , respectively, where pC , αC ∈ R|C|×D×H×W .
Then, pC and αC are concatenated and input to APRN to generate refined seg-
mentations for the labeled organs, which are compared to the ground truth labels
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y to train APRN with a loss LAPRN .4 Thus, APRN learns to refine the main
segmentation network’s prediction guided by the atlas. To apply it to pseudo-
label refinement of unlabeled organs (e.g., the spleen unlabeled in the CT image
in Fig. 2), we slice to obtain pC\C and αC\C , where C\C indicates the difference
set between C and C, i.e., the set of classes unlabeled in a specific image. Next,
pC\C and αC\C are concatenated and input to APRN to produce atlas-refined
pseudo-labels ŷ, which are used to supervise the main segmentation network
on the unlabeled organs via a loss Lpseudo. To reduce the computational cost,
APRN operates on a downsampled scale of 1/2 of the original input image.
Atlas-conditioned Modality Alignment Network (AMAN). Although an
organ may present huge discrepancies in appearance (e.g., intensity, contrast, and
texture) in different modalities, its location, shape, and size should persist sta-
tistically. Nevertheless, it is often difficult to explicitly describe and incorporate
such property consistency into the training of deep neural networks. Instead, we
propose to generalize the consistency constraint of each organ via adversarial
training [22] conditioned on the a priori probabilistic atlas.

The AMAN (Fig. 2) takes in the segmentation predicted by the main seg-
mentation network paired (concatenated) with the atlas for a specific organ and
determines whether the prediction is for an organ labeled in the current modality
(1 for true and 0 for false):

LD(p|α) = −
∑

c∈C
1(c) log fD(pc|αc) +

(
1− 1(c)

)
log

(
1− fD(pc|αc)

)
, (1)

where fD is the discriminator network, c ∈ C is an organ class, pc, αc∈R1×D×H×W

are the corresponding segmentation and atlas for the specific organ, respec-
tively, and 1(c) is an indicator function which equals 1 if the organ c is la-
beled in the current image’s modality and 0 otherwise. Given the domain gap
between modalities, the intramodal segmentation is expected to be better in
quality and thus closer to the atlas than cross-modal segmentation. To con-
fuse the discriminator, the main segmentation network is trained to produce
cross-modal segmentations that better match the atlas with an adversarial loss:
Ladv(p|α) = −

∑
c∈C

(
1− 1(c)

)
log

(
fD(pc|αc)

)
.

Modality-invariant Class Prototype Anchoring Module (MICPAM).
The AMAN described above aligns different modalities in the label space. Below,
we further improve the alignment using the MICPAMs in the latent space.

Class Prototype Extraction: During training, we maintain a set of modal-
invariant class prototypes A(s) = {ā(s)c }c∈C for each feature scale s of the main
segmentation network’s decoder. Without loss of generality, we describe the pro-
totype extraction and anchoring mechanisms with a generic scale and denote
the corresponding feature tensor in this scale by F ∈ Rn×d×h×w. Then, the
prototype for class c can be computed by masked average pooling:

ac =
∑

(z,y,x)
mc,(z,y,x)F:,z,y,x

/∑
(z,y,x)

mc,(z,y,x), (2)

4 The gradients in APRN are not backpropagated to the main segmentation network.
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where (z, y, x) enumerates all coordinates in a d × h × w volume, F:,z,y,x is
the n-dimension feature vector at (z, y, x), and mc is a binary mask indicating
belongingness to class c (1 for true, 0 for false). To ensure the quality of the
representations, we only update the prototypes for labeled classes in each mini-
batch. Further, mc is set to the consensus regions between the ground truth
label y and the main segmentation network’s predicted mask. The rationale is
that only features in correctly predicted regions can represent the organs well.
To prevent the prototypes from being radically affected by potential outliers
and stabilize the training process, the exponential moving average (EMA) [28]
is employed to update each anchor progressively and smoothly: āc = ϵ × āc +
(1− ϵ)× ac, where ϵ is set to 0.99 and āc is initialized randomly.

Anchoring to Prototypes by Deep Supervision: Next, we compute the cross-
attention between the decoder features and the prototypes via dot product [30].
For batch processing, the prototypes of all classes comprise a prototype matrix
A ∈ R|C|×n where each row is a class’s prototype, and the feature tensor F is
reshaped to a matrix F ∈ R(dhw)×n. Then, the attention is computed by

Attn = softmax
(
AWA(FWF )T

)
, (3)

where WA and WF are linear projection matrices. Then, we reshape Attn to
|C| × d× h× w, which is the per-pixel class-wise semantic-aware map from the
features to all class prototypes. From a different perspective, the attention map
can be considered a distance-metric-based segmentation concerning the distances
from the features to the prototypes [5]. Therefore, we impose a segmentation loss
Lproto on the unlabeled classes in Attn supervised by the atlas-refined pseudo-
label ŷ (resizing applied as needed). Not only does Lproto shape the modal-
invariant class prototypes, but it also helps the main segmentation network align
features of different modalities by anchoring them to the prototypes.

As shown in Fig. 2, the MICPAM is inserted at every intermediate feature
scale of our main segmentation network’s decoder for deep supervision [20].
Objective Function, Training, and Inference. The objective function of
the main segmentation network is

L = Lseg + λ1Lpseudo + λ2Ladv + λ3Lproto, (4)

where Lseg is the supervised segmentation loss on labeled organs, and λ1, λ2

and λ3 are weights. For Lseg, the widely used Dice loss [21] plus cross entropy
loss are used. For Lpseudo, Lproto, and LAPRN , the Dice loss is used.

In each training mini-batch, APRN is firstly updated to optimize LAPRN ,
then the main segmentation network and MICPAMs are updated to optimize
Eqn. (4), and lastly, AMAN is updated to optimize Eqn. (1). The detailed algo-
rithm is provided in the supplementary material. Note that the APRN, AMAN,
and MICPAMs are only used during training. For inference, we directly take
the main segmentation network’s prediction as segmentation results, which is as
efficient as a vanilla encoder-decoder architecture in terms of computation cost.
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3 Experiments

Dataset and Experimental Settings. The AMOS22 dataset [16] contains 200
abdominal CT and 40 abdominal MRI scans for training. Voxel-wise annotations
of 13 organs are provided in both CT and MRI. We randomly split the 200 CT
(40 MRI) images into 162 (30) and 38 (10) subjects for training and testing,
respectively. Further, the training CT data is randomly split into two partially
labeled datasets of equal sizes, each for a non-overlapping four-organ segmenta-
tion task: liver, stomach, aorta, and esophagus are labeled in the first, whereas
inferior vena cava, right adrenal gland, left adrenal gland, and duodenum are
labeled in the second. Meanwhile, the remaining five organs are labeled in the
MRI data: spleen, right kidney, left kidney, gallbladder, and pancreas. Therefore,
we formulate a three-task (i.e., M = 3) multimodal partially labeled segmenta-
tion problem. The Dice similarity coefficient (DSC) in percentage (%) is used
for performance evaluation, and the Wilcoxon signed rank test is employed for
analysis of statistical significance.
Implementation. The PyTorch framework (1.7.1) [25] is used for experiments.
We use the same main segmentation network as Zhang et al. [38], essentially a 3D
U-Net comprising a single encoder and a single decoder employing residual blocks
[12] and group normalization [32]. The refiner (APRN) is a similar but smaller
segmentation network, whereas the discriminator (AMAN) is a 3D classification
network. Three Tesla V100 GPUs are used for training, with a batch size of three
volumes. The Adam optimizer [19] is employed with an initial learning rate of
0.0005 and decayed according to a polynomial policy lr = lrinit×(1−k/K)0.9 for
K = 600 epochs. To match an input image and the a priori atlas, we apply the
same preprocessing steps to the image as in the atlas construction and resize the
atlas to the size of the preprocessed image. To standardize all volumes, CT im-
ages are normalized by clipping to [−325, 325] Hounsfield units followed by linear
scaling to the range of [−1,1], whereas MRI images are normalized by subtract-
ing the volume mean and dividing by the standard deviation. During training,
we use random sub-volumes of 64×192×192 voxels as input. No other data aug-
mentation is implemented, as by Zhang et al. [38]. We split ∼12.5% of training
data for validation, i.e., selecting the optimal model for testing. The loss weights
in Eqn. (4) are empirically set to 1, 0.01, and 0.1 for λ1, λ2, and λ3, respectively.
The source code is available at: https://github.com/ccarliu/multimodal-PL.
Performance Comparison with State-of-the-art (SOTA). We compare
our framework with nine SOTA methods: MH-Net [4], Cond-Dec [6], DoDNet
[38], PaNN [40], U2PL [31], VAT [22], PCL [1], DAR-UNet [35], and UniSeg
[36]. We also include single-task models for reference. Table 1 shows the average
intra- and cross-modal performance (i.e., an organ is labeled and evaluated in the
same modality or different ones) of all compared methods. We make the following
observations. First, while the intramodal performance of the three monomodal
partial-label methods (MH-Net, Cond-Dec, and DoDNet) is generally competent
(especially DoDNet, which is highly competitive), their cross-modal performance
is poor. Second, DAR-UNet, PaNN, U2PL, VAT, PCL, and UniSeg yield tremen-
dously improved cross-modal performance over the previous group of methods,
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Table 1. Multimodal (CT and MRI) partially labeled abdominal multi-organ segmen-
tation performance comparison with SOTA methods in DSC (mean±std%). The more
challenging cross-modal evaluation (i.e., an organ is labeled and evaluated in different
modalities) is highlighted with dark shading. Detailed organ-wise results are provided
in the supplementary material. ∗: p < 0.05 for pairwise comparison with our method.

Label Test modality: CT
modality Single MH-Net [4]Cond-Dec [6]DoDNet [38]DAR-UNet [35]PaNN [40]U2PL [31] PCL [1] UniSeg [36] Ours

CT 78.8±17.5∗ 76.9±18.1∗ 79.0±19.2∗ 79.8±18.5 76.6±18.7∗ 74.7±19.1∗ 78.6±18.1∗ 79.6±17.2∗ 79.4±17.4∗ 80.6±16.7
MRI 25.2±13.3∗ 3.3±8.4∗ 15.2±23.8∗ 0.0±0.0∗ 70.3±23.0∗ 60.1±25.3∗ 67.1±20.1∗ 72.9±19.4∗ 73.0±25.3∗ 81.4±14.9

Test modality: MRI
CT 36.2±24.7∗ 12.4±18.1∗ 12.0±17.5∗ 2.4±8.0∗ 53.0±23.4∗ 51.7±26.3∗ 57.7±24.8∗ 57.1±24.5∗ 57.5±19.3∗ 67.8±21.5
MRI 79.4±23.3∗ 76.9±25.8∗ 81.2±20.4∗ 81.6±24.0∗ 76.0±24.3∗ 78.5±20.5∗ 79.3±21.0∗ 80.8±21.0∗ 83.1±21.7∗ 86.1±17.2

Fig. 3. Example segmentation results (top: CT; bottom: MRI) by our and several
representative comparison methods. Organs labeled in CT: liver (■), stomach (■),
inferior vena cava (■), and aorta (■); and organs labeled in MRI: spleen (■), left
kidney (■), right kidney (■), and pancreas (■). Best viewed in color.

by margins of ∼40–70% in average cross-modal DSC. Last, our method performs
best for all four intra- and cross-modal average DSCs. For intramodal, it outper-
forms the second-best method (DoDNet and UniSeg) by 0.8% on CT and 3.0%
on MRI. For cross-modal, it outperforms the second-best methods (UniSeg and
U2PL) by 8.4% (MRI→CT) and 10.1% (CT→MRI), respectively. These results
demonstrate the strong capability of our method in multimodal partially labeled
multi-organ segmentation. Fig. 3 shows example segmentation results.

Table 2. Ablation study on the efficacy of our framework’s three novel modules in
DSC (mean±std%). ∗: p < 0.05 for pairwise comparison with the full model.

Ablation (a) (b) (c) (d) (e) (f) (g) Full
AMAN × ✓ × × ✓ × ✓ ✓
APRN × × ✓ × ✓ ✓ × ✓

MICPAM × × × ✓ × ✓ ✓ ✓
Intramodal 80.1±18.8∗ 80.8±17.4∗ 82.6±17.3∗ 82.1±17.6 82.1±18.2∗ 82.8±17.0 83.3±16.5 83.4±16.9
Cross-modal 63.6±26.3∗ 67.2±20.3∗ 68.8±19.5∗ 69.6±24.8∗ 70.4±20.6∗ 69.5±24.9∗ 69.1±20.7∗ 74.6±18.2

Ablation Study. We conduct ablative experiments to validate the efficacy of
our framework’s novel components (Table 2). The baseline (a) is the main seg-
mentation network trained only on labeled organs in each image. (b), (c), and
(d) add AMAN, APRN, and MICPAMs to the baseline, respectively, and im-
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prove the performance by 0.7–2.5% in intramodal and 3.6–6.0% in cross-modal
evaluation. (e)–(g) evaluate pairwise combinations of the modules, where at least
either intra- or cross-modal performance is improved upon adding a single mod-
ule. Lastly, our full model integrating all three modules achieves the best intra-
and cross-modal performances—especially for the latter, which is 11% higher
than the baseline. These results suggest that not only are the three modules ef-
fective individually, but they are also compatible, boosting each other together.

4 Conclusion and Future Work

This paper presented a novel probabilistic-atlas-guided framework for learning to
segment multiple organs from multimodal partially labeled datasets. Extensive
experiments demonstrated its superiority to existing SOTA approaches and the
efficacy of its novel components. In the future, it would be useful to extend the
framework for lesion segmentation, too. In addition, more advanced registration
methods can be employed for volume alignment and atlas construction. Lastly,
it would be interesting to explore partially labeled datasets with overlapping
organ annotations, which may be exploited to bridge the domain gaps.
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