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Abstract. Automatic tooth segmentation on 3D dental models is a fun-
damental task for computer-aided orthodontic treatment. Many deep
learning methods aimed at precise tooth segmentation currently require
meticulous point-wise annotations, which are extremely time-consuming
and labor-intensive. To address this issue, we propose a weakly supervised
tooth instance segmentation network (WS-TIS) with multi-label learn-
ing, which only requires subject-level class labels along with approxi-
mately 50% of point-wise tooth annotations. Our WS-TIS consists of
two stages, including fine-grained multi-label classification and tooth in-
stance segmentation. Precise tooth localization is frequently pivotal in
instance segmentation. However, annotation of tooth centroids or bound-
ing boxes is often challenging when we have limited point-wise tooth an-
notations. Therefore, we design a proxy task to weakly supervise tooth
localization. Specifically, we utilize a fine-grained multi-label classifica-
tion task, equipping with the disentangled re-sampling strategy and a
gated-attention mechanism, which can assist the network in learning
discriminative tooth features. Based on discriminative features, discrim-
inative regions can be easily obtained, thereby accurately cropping each
tooth. In the second stage, a segmentation module is trained on lim-
ited annotated data (approximately 50% of all teeth) to accurately seg-
ment each tooth within the cropped regions. Experiments on Teeth3DS
demonstrate that our WS-TIS achieves superior performance compared
to state-of-the-art approaches under full annotations. Our code will be
released on https://github.com/ladderlab-xjtu/WS-TIS.
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1 Introduction

The 3D dental models acquired by intraoral scanners (IOS) are becoming increas-
ingly popular in clinical computer-aided design (CAD) due to their convenience
and radiation-free nature. As a very crucial step in clinical orthodontics, precise
tooth segmentation serves as the foundation for subsequent tooth realignment
and treatment planning. However, precise point-wise manual annotation is time-
consuming and labor-intensive, which has prompted many researchers to focus
on developing methods for achieving accurate fully automatic tooth segmenta-
tion. For example, many handcraft geometric feature-based methods [6,17] and
CNN-based methods [21,15] have been proposed. However, these methods either
suffer from the reliance on manual interaction, poor robustness, or the limita-
tion of insufficient resolution due to excessive memory consumption, resulting in
inaccurate segmentation results.

In the community of computer vision, many pioneering works [10,16,20,11]
have been proposed to consume raw point cloud data without any data format
transformation, thus avoiding information loss. Inspired by them, many tooth
segmentation approaches capable of directly handling raw point cloud data have
been proposed [7,18,22,4,12]. For example, MeshSegNet [7] improves PointNet by
enabling the network to learn local relationships between points, enhancing the
accuracy of fine-grained tooth segmentation tasks. TSGCNet [22] learns differ-
ent raw geometric information (i.e., coordinates and normal vectors) through two
different streams, eliminating isolated false predictions caused by the confusion
between different geometric features. Differing from the semantic segmentation
methods mentioned above, TSegNet [4] performs tooth delineation in the in-
stance segmentation fashion. Specifically, TSegNet first predicts the centroid of
each tooth through a centroid regression network. Then, a segmentation network
is trained to segment each tooth from the cropped areas obtained by the centroid
points. However, these existing methods require dense point-wise annotations,
which are labor-intensive for high-resolution dental models. The difficulty of
obtaining such a large amount of dense point-wise annotations in reality also
hinders the generalization and practical application of these methods. To reduce
the annotation data, DArch [12] proposes a weakly annotated training approach
to train the segmentation network using only a few annotation teeth from each
dental model. However, the first stage of DArch still requires complete centroid
annotations, which is challenging to obtain in the absence of dense point-wise
annotations.

To address this issue, we propose a weakly supervised tooth instance segmen-
tation network (WS-TIS) with multi-label learning to accurately segment each
tooth with limited annotation data. To accurately locate teeth without tooth
centroid annotations, we leverage fine-grained classification as a proxy task to
learn discriminative features with multi-label learning. In our proxy task, we use
a task-oriented re-sampling strategy named disentangled re-sampling to alleviate
the feature entanglement caused by extreme label co-occurrence. To enhance the
discrimination of feature representations, we introduce a gated-attention mecha-
nism, allowing features from different channels to focus on each individual tooth.
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Fig. 1. The schematic diagram of our WS-TIS network.

In this way, our network can obtain accurate classification results and effectively
learn the discriminative representations of each tooth with multi-label learning.
Based on discriminative features, weakly supervised localization techniques (e.g.,
CAM [24] and Grad-CAM [14]) can be easily employed to localize the position of
each tooth. Then, the localized teeth are cropped to train a binary segmentation
network with weak point-wise annotations. Extensive experiments have shown
that our network can accurately learn the discriminative features of each tooth
under weak supervision. Besides, the segmentation performance of our WS-TIS
under weak annotations is superior even compared with the state-of-the-art tooth
segmentation methods under full annotations.

2 Method

2.1 Overview

As shown in Fig. 1, our WS-TIS can be divided into two parts, i.e., tooth clas-
sification network and tooth instance segmentation network. The input of the
first network are coordinates and normal vectors, which can be denoted as an
N×6 matrix, with N standing for the number of points in the dental model,
6-dimensional standing for 3-dimensional coordinates and 3-dimensional normal
vectors. Considering the superior performance of TSGCNet in tooth semantic
segmentation, we select it as the backbone for the feature extraction. Equipped
with the disentangled re-sampling strategy and gated-attention mechanism, our
network can accurately predict multi-label classification results and learn the
discriminative features of each tooth. By leveraging the discriminative feature,
the feature visualization techniques can easily detect the position of each tooth.
The regions containing the target tooth are cropped and fed into the instance
segmentation network, which can be denoted as an M×6 matrix, with M standing
for the number of points in the cropped region and 6-dimensional still standing
for coordinates and normal vectors. The segmentation network can delineate
each tooth within the cropped area.
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2.2 Tooth multi-label classification

In practice, obtaining the centroids or bounding boxes of the target objects is
challenging. To accurately localize each tooth, we leverage a fine-grained clas-
sification in a weakly supervised manner. Specifically, we train a multi-label
classification network as a proxy task to detect the discriminative regions of
each tooth. Leveraging two distinct feature extraction streams of TSGCNet,
i.e., C-Stream and N-Stream, the learned geometric representations will be fur-
ther fused to make the final prediction. To make accurate classification and
enable the network to learn discriminative features, we design a disentangled re-
sampling strategy to alleviate the feature entanglement caused by extreme label
co-occurrence and further introduce a gated-attention mechanism to enhance the
feature discrimination of different teeth. We will provide detailed explanations
in the following sections.

Disentangled re-sampling strategy In the fine-grained classification task,
discriminative features typically indicate the position of the target category.
However, due to the label co-occurrence, certain labels often appear together
in multi-label classification tasks, thereby affecting the learning of discrimina-
tive features. Furthermore, the imbalanced data distribution further increases
the difficulty of learning. Many multi-label classification networks [19,3,13] are
dedicated to addressing this issue by model and loss designs. However, unlike
natural images (for example, toothbrushes always appear with people), label
co-occurrence in dental surfaces is not explicitly linked. In addition, the label
co-occurrence issue in dental models is particularly severe since most people have
a full set of teeth, resulting in a scarcity of negative samples in the dataset. This
leads to feature entanglement between different teeth, making it difficult for the
network to learn discriminative features. Since the aforementioned issues, most
existing methods are not suitable for our task.

Thus, we propose a task-oriented re-sampling strategy (not required dur-
ing inference), i.e., a disentangled re-sampling strategy. Different from common
multi-label classification tasks, our classification task serves as a proxy task for
tooth localization before instance segmentation, which means that we have par-
tial tooth point-wise labels. Specifically, we randomly select K teeth that have
point-wise labels on a dental model and put them into the classification net-
work. The input can be denoted as a P×6 matrix. This simple but intuitive
design effectively balances the number of instances between different classes and
significantly alleviates the issue caused by extreme label co-occurrence, allowing
our network to learn the discriminative features of different teeth.

Gated-attention mechanism Furthermore, discriminative features should be
as accurate as possible, ensuring they are contained within the range of the target
teeth. To make the features more discriminative for different tooth categories,
we hope to introduce an attention mask to weight features. Inspired by [5], we
introduce a gated-attention mechanism in our classification network. Specifically,
after the feature fusion of two different streams, we obtain a multi-view high-level
representation which can be denoted as f ∈ RN×1024, where N is the number
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of points and 1024 is the number of channels. The attention mask A can be
obtained from multi-view representation f , which can be denoted as

A = Softmax(ω(tanh(ϕθ1(fi))⊙ sigmoid((ϕθ2(fi))), (1)
where ω, θ1 and θ2 are learnable parameters, tanh and sigmoid are activation
function. It is worth noting that A ∈ RN×C represents the relevance of each
point to the different tooth classes, where C denotes the number of teeth in
dental models. The learned attention mask A will be used to weight the multi-
view feature f , which can be denoted as:

f̂ = A× f (2)
where f̂ ∈ RN×1024×C . The proposition of attention mask A allows the high-level
representation f to exhibit explicit discriminative characteristics for different
teeth. Thus, localization techniques (e.g., CAM and Grad-CAM) can be em-
ployed to accurately detect the position of all teeth in the setting of multi-label
learning. Based on f̂ we perform binary classifications separately for each feature
which represents different tooth categories to determine if this tooth exists on
the dental model. To further alleviate the impact of class imbalance issues, we
employ focal loss[8] in our multi-label classification network.

2.3 Tooth instance segmentation

To ensure the complete cropping of the target tooth, we select the nearest M
points to the discriminative features’ centroid as the cropped region, which is
set as 2, 048 in our experiments. It is worth noting that we only crop teeth with
point-wise labels on a dental model. The cropped region which can be denoted
as an M×6 matrix will be put into the segmentation network for binary segmen-
tation. Considering the effectiveness and convenience, we choose the DGCNN as
our segmentation network. It will ultimately delineate the target teeth within
the cropped region. In the inference stage, we fuse the segmentation results of
each tooth onto a complete dental model based on the multi-label classification
results. It is worth noting that, we already have the IDs for each cropped region
in the classification network, so there is no need to design an additional tooth
ID prediction network as in TSegNet [4].

2.4 Implementation details

Our WS-TIS is trained on an NVIDIA RTX4090 GPU. We employ focal loss
for the multi-label classification network and cross-entropy loss for the instance
segmentation network. The learning rate for both networks is set as 0.001, and
they are trained for 200 epochs. The mini-batch sizes of the two networks are 2
and 32, respectively. Besides, we sample 8, 000 points as input to the classification
network and crop 2, 048 points for the segmentation network.

3 Experiments

3.1 Dataset and evaluation metrics

To evaluate the performance of our model, we use a publicly available den-
tal dataset, Teeth3DS [2]. The Teeth3DS releases 1, 200 high-resolution dental
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Raw model PointNet DGCNN TSGCNet Ours GT

Fig. 2. The visualization results of different segmentation methods. The red circles
highlight the locations where our method outperforms others significantly.

Table 1. The classification and segmentation results (mean±std) of our method under
weak annotations and other competing methods under full annotations.

Method Classification Segmentation
mAP ↑ FPR↓ mIoU ↑ Dice↑

PointNet [10] - - 79.84± 2.74 82.43± 1.46
DGCNN [16] - - 84.04± 2.47 87.04± 1.22
TSGCNet [22] - - 90.46± 2.13 91.61± 1.56
DB Loss [19] 94.70± 1.00 46.71± 2.31 - -

WS-TIS 96.37± 0.74 17.50± 1.19 96.09± 0.94 97.37± 0.48

models collected from intraoral scanners, which have been annotated with dense
point-wise labels. The number of points in the dental models from Teeth3DS
ranges from 100, 000 to 400, 000. Due to limitations in computational resources,
we down-sample these points to approximately 16, 000. Notably, to simulate the
limited label scenario, we randomly mask some teeth as background.

We randomly select 600 samples for training, 300 samples for validation, and
the remaining 300 samples for testing. In the comparison experiments, we utilize
the commonly used mIoU and Dice metrics to quantify the performance of our
segmentation network. Due to the extreme label co-occurrence in the dental
models, we employ mAP (mean Average Precision) and FPR=FP/(FP+TN)
(False Positive Rate) to quantify the performance of our classification network.

3.2 Comparison results
Competing methods To validate the performance of our method, we compare
our WS-TIS with the state-of-the-art methods of tooth segmentation and multi-
label classification. For the multi-label classification, we compare our method
with DB Loss [19] which can effectively address the issues caused by label co-
occurrence and imbalanced data distribution in natural images. For the tooth
segmentation task, we compare our method with TSGCNet [22], PointNet [10],
and DGCNN [16]. TSGCNet utilizes two distinct streams to learn the high-level
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Fig. 3. Feature visualization of classification network with different experimental set-
tings. The blue indicates regions with low feature values, while the red highlights areas
with higher feature values, marked by dashed squares. The last row displays the posi-
tions of the target teeth.

representations of different geometric attributes, obtaining superior performance
in tooth segmentation. PointNet and DGCNN are representative segmentation
networks in general 3D shape segmentation.

Results The quantitative results of multi-label classification are shown in Ta-
ble 1. From Table 1, we can observe that the classification network of our WS-
TIS achieves superior performance on both mAP and FPR. While our method
only has a slight lead of 1.6% in mAP, it achieves a nearly 30% reduction in
FPR compared to DB loss. This demonstrates the excellent performance of our
method in multi-label tooth classification, especially in cases of extreme label co-
occurrence. We further employ feature visualization techniques (we choose CAM
for its convenience and simplicity) to show the locations of learned discriminative
features, as illustrated in Fig. 3. Obviously, our WS-TIS learns discriminative
features that can accurately localize each tooth, while DB Loss in the first row
struggles to differentiate between individual teeth.

For the tooth segmentation, the quantitative results are shown in Table 1.
From Table 1, we can observe that our network trained with weak annotations
outperforms other segmentation networks under full-label supervision. Com-
pared to the TSGCNet, our method achieves an improvement of 5.6% in mIoU
and 5.8% in Dice. Fig. 2 presents the visualization results of different segmen-
tation networks. From Fig. 2, we can observe that due to the proximity and
similar appearances of adjacent teeth, other methods often make false predic-
tions in these regions. However, the high-quality discriminative features make
our method consistently achieve stable and accurate segmentations.

We set up the comparison experiments with the same configuration to ensure
a fair comparison. Notably, we do not include recent methods [1,9,23] in our
comparative experiments as they don’t release their codes. However, according
to their reported results on the same dataset (Teeth3DS), our method remains
qualitatively superior.
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Table 2. Ablation studies regarding the key components of our method.

Method mAP ↑ FPR ↓
w/o re-sampling 94.51 49.24
w/o attention 87.31 62.36

WS-TIS 96.37 17.50

3.3 Ablation studies

Sampling strategy To alleviate the feature entanglement caused by extreme
label co-occurrence, we design a disentangled re-sampling strategy that effec-
tively increases the number of negative samples, allowing the classification net-
work to learn the discriminative features of each tooth. To validate the effective-
ness of our disentangled re-sampling strategy, we conduct an ablation experiment
without this task-oriented re-sampling strategy (w/o re-sampling).

According to the quantitative results shown in Table 2, we can observe that
the method without the re-sampling strategy, despite achieving a high mAP, ex-
hibits nearly 50% FPR. This indicates that networks struggle to learn discrimina-
tive features effectively in situations of extreme label co-occurrence, resulting in
inaccurate classifications. The feature visualization results in Fig. 3 also confirm
this claim. From Fig. 3, we can see that the network without sampling strategy
tends to confuse the features of different teeth. On the contrary, our approach
can accurately learn the discriminative features of each tooth, providing effective
assurance for tooth localization.

Gated-attention We introduce a gated-attention mechanism to enhance the
discriminative features among different teeth, thereby improving classification
accuracy. To check the efficacy of our gated-attention mechanism, we conduct
an ablation study by removing gated-attention from our WS-TIS.

The classification results are presented in Table 2. From it, we can observe
that the gated-attention significantly improved classification accuracy, increas-
ing mAP by 9% and reducing FPR by 45%. Furthermore, from the feature
visualization results in Fig. 3, we observe that the network struggles to learn
discriminative features for each tooth without gated-attention. This indicates
that our gated-attention is effective in enhancing the discrimination of features
among different teeth.

4 Conclusion

In this paper, we have proposed a weakly supervised tooth instance segmenta-
tion with multi-label learning to address tooth segmentation under weak anno-
tations. Due to the absence of tooth center annotations, we adopt a fine-grained
multi-label classification as a proxy task. Specifically, we design a disentangled
re-sampling strategy to effectively alleviate the feature entanglement caused by
extreme label co-occurrence, and leverage the gated-attention mechanism to en-
hance the discrimination of features among different teeth and thereby improve
the accuracy of discriminative features. A cropped region can be obtained based
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on the discriminative feature from the fine-grained classification network. Then,
a segmentation network predicts the positions of the target tooth within the
cropped area. Extensive comparison experiments demonstrate that our WS-TIS
achieves superior performance in tooth segmentation even under weak annota-
tions.
Acknowledgments. This work was supported in part by NSFC Grant (No.
62101430).
Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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