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Abstract. Graph neural networks (GNNs) represent a cutting-edge method-
ology in diagnosing brain disorders via fMRI data. Explainability and
generalizability are two critical issues of GNNs for fMRI-based diag-
noses, considering the high complexity of functional brain networks and
the strong variations in fMRI data across different clinical centers. Al-
though there have been many studies on GNNs’ explainability and gen-
eralizability, yet few have addressed both aspects simultaneously. In this
paper, we unify these two issues and revisit the domain generalization
(DG) of fMRI-based diagnoses from the view of explainability. That is,
we aim to learn domain-generalizable explanation factors to enhance
center-agnostic graph representation learning and therefore brain dis-
order diagnoses. To this end, a specialized meta-learning framework cou-
pled with explainability-generalizable (XG) regularizations is designed
to learn diagnostic GNN models (termed XG-GNN) from fMRI BOLD
signals. Our XG-GNN features the ability to build nonlinear functional
networks in a task-oriented fashion. More importantly, the group-wise
differences of such learned individual networks can be stably captured
and maintained to unseen fMRI centers to jointly boost the DG of diag-
nostic explainability and accuracy. Experimental results on the ABIDE
dataset demonstrate the effectiveness of our XG-GNN. The source code
will be released on https://github.com/ladderlab-xjtu/XG-GNN.

Keywords: Domain generalization · Explainability · Meta-learning ·
Graph neural networks · fMRI

1 Introduction

Brain network analysis, especially through the use of functional magnetic reso-
nance imaging (fMRI) techniques, plays a crucial role in understanding neurolog-
ical developments and degenerations, along with their associated disorders [16].

https://github.com/ladderlab-xjtu/XG-GNN
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For instance, translational psychiatry research has shown that the functional
changes and remodeling associated with Autism spectrum disorders (ASD) may
appear before the behavioral symptoms [5], highlighting the clinical importance
of fMRI for early diagnosis and intervention. Numerous studies in the literature
have aimed to develop classification models using fMRI data to identify biomark-
ers and diagnose neuropsychiatric disorders [9,12]. Among these, graph neural
networks (GNNs) have garnered significant attention, which stems from their
specialized learning mechanisms well-suited for the processing of data structured
as graphs [11,15,7]. Overall, the practical usage of these GNN-based diagnostic
methods heavily relies on their explainability and generalization. This is partic-
ularly challenging given the high complexity of functional brain networks and
the strong variations in fMRI data across different clinical sites.

In recent years, the push to enhance the explanation and generalization capa-
bilities of GNNs has gained momentum, yet few efforts have addressed both as-
pects simultaneously. For instance, to make GNN-based diagnostics more trans-
parent, [14] and [2] design learnable graph-pooling and graph-masking operations
to identify subject-level and group-level explanations from the functional con-
nectivity (FC) network defined by linear correlations, respectively. In [20], the
authors integrated modularity prior of the human brain into DNNs to enhance
the explainability of diagnoses through dynamic linear FC. It is important to
note that linear FCs, such as those based on Pearson correlations, overlook the
temporal order and struggle to fully capture the complexities of brain networks.
In response, studies like [8] and [23] have developed GNNs that learn nonlinear
FCs from fMRI BOLD signals in a task-oriented manner. These fully learnable
methods excel in identifying abnormal brain connections tied to particular disor-
ders, providing more explicit explanations for biomarker discovery and diagnosis.
However, much existing research on explainability fails to consider the signifi-
cant domain shifts in fMRI data, which severely limits the ability of diagnostic
models and identified biomarkers to be generalized across various clinical cen-
ters. To improve generalization in diagnosing brain disorders, researchers have
explored domain adaptation (DA) [13] and domain generalization (DG) [12]. For
example, [12] introduced a meta-learning framework to develop site-invariant
(i.e., DG) models for ASD diagnosis using linear FCs. It is worth mentioning
that DG does not require fine-tuning on the unknown target set, making it more
applicable than DA in the context of medical imaging. However, these studies
primarily concentrate on improving the generalization of classification outcomes
rather than the explanatory power. It limits the models’ ability to accurately
classify because identifying generalizable biomarkers is a fundamental step to-
wards achieving reliable diagnoses of complex brain disorders.

Consistent with the perspectives shared in our previous work [22], we pro-
pose that the explicit learning of explanatory factors to enhance discrimina-
tive representation learning represents a logical strategy for concurrently en-
suring reliable diagnostic outcomes and detailed explainability. This is partic-
ularly relevant given the inherent complexity, noise, and redundancy typical
of functional brain networks. Diverging from this, our study here goes a step
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further by unifying explainability with generalizability. That is, we aim to learn
domain-generalizable explanation factors to enhance domain-agnostic extraction
of discriminative representations. This, in turn, facilitates accurate and explain-
able diagnoses across various clinical centers. To achieve this, an explainability-
generalizable GNN (termed XG-GNN) is developed to learn task-oriented brain
networks and associated diagnoses from the BOLD signals of pre-parcellated
brain regions. We employ a specialized meta-learning framework to train such
an end-to-end network, focusing on the dual goals of explanability and diagnostic
accuracy. Specifically, in the outer-loop episode of the meta-learning procedure,
we define explainability-generalizable (XG) regularizations to maintain center-
agnostic group-level differences of learned brain networks, based on which the
inner-loop episode naturally simulates scenarios where these consistently identi-
fied, detailed explanatory factors enhance the learning of fine-grained discrimina-
tive representations, leading to precise diagnoses across unseen domains. Experi-
mental evaluations on the public ABIDE benchmark indicate that our XG-GNN
leads to state-of-the-art DG performance in fMRI-based ASD diagnosis with
verifiable explanations.

Overall, the main contributions of the paper are threefold:

1. To the best of our knowledge, this is the first attempt to unify explainability
and generalizability in the task of brain disorder diagnosis across multi-
center fMRI data. Learning domain-agnostic explanatory factors to enhance
discriminative feature representation is an intuitive strategy to achieve reli-
able DG of explainable diagnostic models in such a challenging task.

2. We introduce a specialized meta-learning framework, augmented with ex-
plicit XG regularizations, to enable the simultaneous DG of both diagnostic
explanations and outcomes.

3. Our XG-GNN learns individualized brain networks while also identifying
their class/group-wise differences across different centers, featuring its capa-
bility to concurrently recognize subject-specific and group-consistent abnor-
malities related to particular disorders.

2 XG-GNN

2.1 Architecture

Our XG-GNN performs explainable diagnosis by using as input the BOLD sig-
nals of the brain regions of interests (ROIs), e.g., pre-parcellated according to
the CC200 atlas [1]. As shown in Fig. 1, the model consists of two main compo-
nents, i.e., a brain-graph learner based on multi-head self-attention mechanisms
(MHSA) and a diagnoser based on graph convolutional network (GCN) [10]
blocks. In an end-to-end learnable fashion, the MHSA-based graph learner builds
nonlinear functional networks, based on which the GCN-based diagnoser outputs
the respective disease status, e.g., ASD or typical development (TD).
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Fig. 1: Illustration of our XG-GNN for multi-site brain disorder diagnosis.

1) MHSA-Based Graph Learner: Let X ∈ Rn×T be the raw fMRI BOLD
signals of a subject, where n is the number of ROIs and T represents the length
of each ROI’s time series. Then, by regarding the ROIs as the vertices, say V =
{v1, . . . , vn}, the goal is to learn an undirected weighted graph G = (V, E ,M)
in terms of X, where E represents the set of edges, namely the collection of
connected vertices (vi, vj) from vi to vj , and M ∈ Rn×n is the learned nonlinear
connectivity matrix among the ROIs. Such a graph G is built in a task-oriented
fashion to capture subject-specific disorder patterns.

To this end, we design a simple but effective sub-network, i.e., MHSA-based
graph learner, with fundamental blocks. As shown in Fig. 1 (a), it first applies a
set of three consecutive one-dimensional convolutional (Conv1d) layers followed
by batch normalization (BN1d) and rectified linear unit (ReLU) operations to
map each ROI’s BOLD into a nonlinear feature space, such as

Fi = BN1di(Conv1di(X)) = BN1di(XWi + bi), (1)

where Fi ∈ Rn×hi is the output BOLD embedding from the ith layer (parame-
terized by Wi and bi), and hi is the respective number of channels. Then, after
squeezing the BOLD embedding from the last Conv1d layer with a channel-
wise max pooling operation, the projection module applies two linear transfor-
mations followed by a softmax activation to map the features to the desired
output size, the resulting tensor f ∈ Rn×h is further processed by a MHSA
block to capture the complex nonlinear associations between different brain
regions. In MHSA, it first performs multi-head linear transformations to pro-
duce the query (Q), key (K), and value (V) from f for each head, such as
Q = Wqf + bq,K = Wkf + bk,V = Wvf + bv, respectively. After that, each
ROI’s embedding is updated by aggregating the cross-ROI associations:

MHSA(Q,K,V) = softmax

(
QKT

√
dk

)
V, (2)
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where dk is the channel dimension of K. Finally, the outputs of all heads are
merged to produce the final BOLD embedding A ∈ Rn×m, based on which the
brain connectivity is defined as M = AAT .

2) GCN-Based Diagnoser: Given the brain graph G = (V, E ,M) with M
learned by the MHSA-based graph learner, we further develop a fundamen-
tal GCN-based classifier to conduct diagnosis. There are three GCN blocks in
such a diagnoser, with each containing graph convolution followed by BN and
LeakyReLU activation. Specifically, given input node features gi−1 ∈ Rn×ri−1 ,
each block outputs the updated features gi ∈ Rn×ri (parameterized by Ui) as

gi = BN(GCN(M,gi−1)) = BN(RELU(Mgi−1Ui)). (3)

The node features input into the first block are simply initialized by cross-ROI
Pearson correlation coefficients. Finally, the node-level feature representations
are flattened to produce graph-level diagnostic outcomes with a projection con-
sisting of multiple linear layers and activation functions.

2.2 Explainability-Generalizable Meta-Learning

1) Explainability-Generalizable (XG) Regularization: Our model learns
nonlinear FC matrices and associated diagnoses in a task-oriented fashion, with
the FC naturally capturing subject-specific patterns tied to the diagnostic out-
come. To further enhance the group-wise explanations as well as their general-
ization across heterogeneous sites, we design complementary XG regularizations
by leveraging fundamental prior regarding the early status of neuropsychiatric
disorders (e.g., ASD), independent of fMRI centers.

Sparsity of Inter-Group FC Differences. Considering that the functional ab-
normalities related to the early disorder stage are typically regionalized or not
widely diffused over the whole brain, it is straightforward to assume that the
group-wise differences between early disorder and health in terms of FCs are rel-
atively sparse [21]. To enhance such group-wise explainability of learned FCs, we
design a targeted entropy-based regularization Lsp. Specifically, let D1, ..., DK

be K different clinical sites. For each site Dk, there are two different subject
groups, i.e., patients and healthy controls. We average the learned FCs in each
subject group of Dk, denoted as M+

Dk
and M−

Dk
, respectively. Then, we quantify

the group-wise FC differences as ∆Dk
=

∣∣∣M+
Dk

−M−
Dk

∣∣∣ ∈ Rn×n. To enhance
the sparsity of such group-wise FC differences, we define the penalty as

Lsp = −∥
∑
k

∆Dk
log∆Dk

∥2. (4)

Cross-Site Consistency of Inter-Group FC Differences. Considering that,
given a particular disorder, the inter-group differences of FCs are typically sta-
ble and independent of fMRI data sites [19], we design a cross-site consistency
regularization to enhance such center-agnostic group-wise explanations, such as

Lcons = −
∑
i,j

∥
∣∣∆Di

·∆Dj

∣∣
|∆Di

|
∣∣∆Dj

∣∣∥2, (5)
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Algorithm 1 Explainability-Generalizable Meta-Learning
Require: Source domain dataset S;

Meta-parameters: step size γ, number of meta-iterations K
Ensure: Updated XG-GNN model parameters θ
1: Randomly initialize model parameters θ
2: for k = 1 to K do
3: Randomly partition S into inner-loop set Sinner and outer-loop set Souter;
4: Inner-loop: Update θ′k on Sinner using cross-entropy loss θ′k = θk−1 −

γ∇θk−1Lce(Sinner; θk−1);
5: Outer-loop: Update XG-GNN model parameters θ on Souter using meta loss

θk = θk−1 − γ∇θ′
k
Lmeta(Souter; θ

′
k).

6: end for

where i and j represent any two different centers. Overall, the combination
of Eqs. (4) and (5) jointly form the XG regularization on learning domain-
generalizable, group-wise explanations to boost diagnoses.
2) Bi-Level Meta-Learning Algorithm: To achieve joint DG of explana-
tions and diagnoses, we design a bi-level meta-learning algorithm to train our
GNN model under the XG regularization, such as shown in Algorithm 1. Given
the fMRI data from multiple source-domain centers, i.e., S = {D1, ..., DK}, the
algorithm simulates the DG scenario to enhance the stability of learned expla-
nation factors and associated diagnostic outcomes when applied to potentially
unseen (i.e., target-domain) centers. As shown in Fig. 1 (b), in the inner-loop of
the bi-level optimization, we randomly sample a few subsets of source-domain
centers (say Sinner), on which the GNN model is trained by simply Lce for clas-
sification. Specifically in the outer-loop of the bi-level optimization, we further
sample the remaining source-domain centers (say Souter), on which the GNN
model is trained by minimizing a meta-learning loss:

Lmeta = Lce + αLsp + βLcons, (6)
where Lsp and Lcons are from Eqs. (4) and (5), respectively, α and β are tuning
parameters, and Lce is a general cross-entropy loss for classification. Due to
the implicit function relationship established by bi-level optimization [4], such
a meta-learning algorithm effectively drives the group-wise explanation factors
stably captured in the outer-loop to be generalized to boost diagnoses in the
inner-loop (i.e., simulated DG situation). For more details regarding the meta-
learning procedure and Algorithm 1, please refer to the Supplementary Material.

3 Experiments

3.1 Experimental Setup

1) Dataset: We evaluated our XG-GNN on the publicly accessible ABIDE
(Autism Brain Imaging Data Exchange) dataset [3]. Specifically, the resting-
state fMRI data from 16 international imaging centers were used, with 416 ASD
and 418 TD individuals, respectively. We used the CC200 atlas [1] to parcellate
each brain and averaged the BLOD signals within each brain ROI.
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Table 1: Diagnostic results (mean±std) for different competing methods on the
three target domains from the ABIDE dataset.

Method ACC(%) AUC(%) F1 Score(%)
BrainnetCNN [9] 65.35± 2.20 70.87± 1.62 62.04± 1.54

IBGNN [2] 65.26± 1.61 72.88± 2.41 62.01± 2.93

Coral[17] 65.46± 2.22 70.75± 1.99 64.97± 4.31

GenM [12] 62.98± 4.79 69.40± 6.51 57.22± 9.31

DuMeta[18] 68.78± 5.02 73.41± 2.78 69.44± 5.33

XG-GNN (ours) 70.66± 1.07 76.32± 0.55 69.78± 3.82

Table 2: Ablation studies regarding each key component of our XG-GNN.
Ablation experiment Baseline w/o XG w/o Lcons w/o Lsp XG-GNN (ours)

ACC(%) 64.66 68.80 69.97 69.04 70.66

AUC(%) 70.27 75.57 77.47 75.94 76.32

2) Implementation Details: Our XG-GNN was implemented in PyTorch and
was trained on a PC with one NVIDIA RTX 3060 GPU. The model was trained
in the bi-level meta-learning framework by using the Adam optimizer for 5, 000
iterations. In both the inner-loop and outer-loops episodes, the learning rate was
initally set as 0.001, which was decayed by half after every 1, 000 iterations. We
randomly selected one center as the target domain and regarding the remain-
ing 15 centers as the source domians, under the requirement that the number
of subject in the target domain should be relatively large (e.g., > 95) for a re-
liable quantification of the domain generalization performance. The procedure
was repeated 3 times, i.e., the training was executed 3 different times, and the
outcomes on the 3 different target domains were averaged as the final results.
3) Competing Methods: Our XG-GNN was compared with two representa-
tive methods for fMRI-based classification, i.e., BrainnetCNN [9] and IBGNN [2].
It was also compared with three representative DG methods, including GenM [12],
Coral [17], and DuMeta [18]. Notably, we used the original version of GenM,
as it was previously developed for DG of fMRI-based diagnosis. Since Coral and
DuMeta were not originally developed for fMRI, we adapted them to use the
same GNN architecture as our method for fair comparisons.
4) Evaluation Metrics: To comprehensively evaluate the diagnostic perfor-
mance, we used three complementary metrics, i.e., accuracy (ACC), balanced
F1-score, and area under the receiver operating characteristic curve (AUC).
3.2 Results

1) Classification Results: The diagnostic results obtained by all competing
methods on the three target domains are summarized in Table 1, from which
we can draw at least two key observations. First, compared with BrainnetCNN
and IBGNN, most DG methods (i.e., Coral, DuMeta, and our XG-GNN) led
to better performance in terms of most metrics on the three unseen domains.
It suggests that domain gaps do exist across different fMRI data centers, and
DG plays a important role in enhancing the generalization of diagnostic models.
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Fig. 2: Explanation results on ABIDE dataset.

Second, compared with all other methods, our XG-GNN consistently obtained
significantly better results in terms of all metrics, implying the efficacy of our
methodological designs in the task of fMRI-based brain disorder diagnosis. The
variance of evaluation metrics obtained by our XG-GNN is much smaller com-
pared to other methods, indicating its reproducibility and robustness.
2) Explanation Results: To check the efficacy of our XG-GNN in identifying
domain-generalizable explanation factors, on the unseen target domains, we cal-
culated the group-wise difference of the learned FCs and compared it with that
quantified from linear FCs in terms of Pearson correlations. The corresponding
visualization results are shown in Fig 2. From Fig. 2 (a), we can see that the
group-wise difference in terms of the linear FCs is very uninformative (with al-
most all values be small). This suggests that the information captured within
the brain network via Pearson correlation may exhibit minimal variance, thereby
potentially limiting its utility in disorder diagnosis tasks. In contrast, as shown
in Fig. 2 (b), the group-wise difference of the task-oriented FCs learned by our
XG-GNN distinctly highlights the limbic modules as well as their connections
with other network modules (highlighted in Fig. 2 (c)). This observation aligns
consistently with the findings from previous neuroscience studies [6] that have
reported significant differences in the limbic system between ASD and TD. It is
worth mentioning that our model maintains this interpretability across different
sites. These visualization results suggest that our method can stably capture
group-wise connectivity abnormalities independent of fMRI centers, which is
critical for the generalization of diagnostic explainablity and therefore accuracy.
3) Ablation Studies: We conducted ablation studies to verify the contribu-
tions of two key components of our method, i.e., the meta-learning strategy and
the associated XG regularization. Let Baseline be our network trained without



XG-GNN for Multi-Site Brain Disorder Diagnosis 9

meta-learning, and w/o XG, w/o Lcons, and w/o Lsp denote our network
trained in the meta-learning framework while without using the XG regulariza-
tions, Lcons, and Lsp, respectively. The comparisons between the original XG-
GNN and these variants are summarized in Table 2. According to the results of
Baseline and w/o XG, we can see both the meta-learning framework and the
XG regularization (i.e., the combination of Lcons and Lsp) contributed to signifi-
cant improvements of the diagnostic performance. On the other hand, according
to the results of w/o Lcons and w/o Lsp, we can see that the removing of any
of these two terms resulted in the drop of performance, implying their comple-
mentarity in enhancing domain-generalizable explainability and diagnoses.

4 Conclusion
In this paper, we have proposed an explainability-generalizable GNN for the do-
main generalization of brain disorder diagnosis across multi-center fMRI data.
To this end, a meta-learning framework integrating specialized regularizations
have been developed to learn task-oriented brain networks that capture center-
agnostic explanation factors to enhance discriminative graph representation learn-
ing and diagnostic outcomes. To the best of our knowledge, this is the first
attempt to unify explainability and generalizability in the task of fMRI-based
diagnosis. Experimental results on the ABIDE dataset have verified the efficacy
of our method from both the aspects of diagnostic accuracy and explainability.
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