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Abstract. In bronchoscopic navigation, depth estimation has emerged
as a promising method with higher robustness for localizing camera
and obtaining scene geometry. While many supervised approaches have
shown success for natural images, the scarcity of depth annotations lim-
its their deployment in bronchoscopic scenarios. To address the issue
of lacking depth labels, a common approach for unsupervised domain
adaptation (UDA) includes one-shot mapping through generative adver-
sarial networks. However, conventional adversarial models that directly
recover the image distribution can suffer from reduced sample fidelity
and learning biases. In this study, we propose a novel adversarial dif-
fusion model for domain-adaptive depth estimation on bronchoscopic
images. Our two-stage approach sequentially trains a supervised net-
work on labeled virtual images, and an unsupervised adversarial network
that aligns domain-invariant representations for cross-domain adapta-
tion. This model reformulates depth estimation at each stage as an it-
erative diffusion-denoising process within the latent space for mitigating
mapping biases and enhancing model performance. The experiments on
clinical sequences show the superiority of our method on depth estima-
tion as well as geometry reconstruction for bronchoscopic navigation.

Keywords: Bronchoscopic Navigation · Domain-adaptive Depth Esti-
mation · Adversarial Diffusion Model.

1 Introduction

Lung cancer is the leading cause of global cancer incidence and mortality, with an
estimated 2.20 million new diagnoses and 1.79 million deaths per year [29]. Early
diagnosis of lung cancer is critical for improving patient outcomes, especially in
the case of peripheral pulmonary nodules [26]. Compared with transbronchial
needle aspiration and thoracic surgery, bronchoscopy offers a safer alternative
for airway-related diagnosis and treatment with reduced burden on patients [12].
However, in clinical scenarios, bronchoscopic intervention remains a challenging
task for pulmonologists due to the complex structure of airways. The desire to
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access difficult-to-reach peripheral lesions with minimal complications drives the
development of navigation systems for bronchoscopic procedures.

Bronchoscopic navigation systems based on electromagnetic (EM) tracking
[17, 25], designed to provide real-time positions using EM sensors, have been
investigated for camera localization over the decades. Despite having shown a
certain level of success in diagnostic biopsy, EM-based methods suffer from CT-
to-body divergence [19] caused by tissue deformation and sensory distortion,
limiting their clinical efficacy of diagnosis and treatment.

Vision-based approaches, in contrast to EM-based ones, have been proposed
to tackle the above CT-to-body divergence [21]. Various studies have focused
on feature-based image-CT registration [13, 32] and reconstruction-based tech-
niques [2, 31], yielding some promising results. However, visual factors such as
inconsistent illumination and texture-scarce surface are still principle challenges
that hinder their navigational accuracy.

Fig. 1. Cross-domain gap between simulated and realistic images can cause perfor-
mance decline on depth estimation. Unsupervised Domain Adaptation (UDA) bridges
the gap by leveraging a label-rich source domain to solve tasks on a related unlabeled
target domain, improving model performance without annotations in the real domain.

Due to the enhanced robustness against such visual obstacles, depth esti-
mation has gained attention from researchers as it directly recovers geometri-
cal structure from images. The recent progress in deep-learning techniques has
inspired many works on endoscopic depth estimation to adopt training strate-
gies. Since ground-truth (GT) depth maps are hardly available in bronchoscopic
scenarios, [3] trained the network on virtual image-depth pairs for supervised
learning. However, the domain gap between virtual and realistic images can lead
to a performance decline during the inference phase.

Unsupervised domain adaptation (UDA) is proposed to address this prob-
lem by reducing distribution gaps between labeled source domain and unlabeled
target domain [5, 10], as shown in Fig. 1. Motivated by the UDA works cen-
tered on cross-domain image translation, [20] utilized an image-level transfer
network before employing the depth estimator for domain adaptation. [27] pro-
posed a network based on CycleGAN [34] for bronchoscopic depth recovery. In
additional to an extra computational cost incurred by such image-to-image trans-
lation, maintaining task-specific features can also be challenging. Feature-level
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domain adaptation overcomes these limitations by aligning domain-invariant fea-
tures without explicitly reconstructing targeted images [30]. Among mainstream
feature-level alignment methods, adversarial learning has become a well-proven
approach for domain adaptation. [11] utilized an adversarial pipeline with source
and target images learned in a sequential manner. Despite their power, conven-
tional GAN-based models employ a rapid one-shot sampling process without any
intermediate step, which inherently makes the network susceptible to mapping
biases [23]. In addition, plain GANs are prone to suffer from training instabil-
ity and mode collapse [16]. Diffusion models, as a promising alternative, have
recently been adopted to enhance sampling reliability in generative tasks [4, 9].
Yet, their potential for tackling UDA problem in the context of medical images
remains largely unexplored.

In this study, we propose a novel two-stage adversarial diffusion model for
domain-adaptive depth estimation on bronchoscopic images. To address the lack-
ing of GT depths from the real domain, we initially train a network using virtual
images along with their simulated GT depths. In the second stage, an adversar-
ial framework is leveraged to learn domain-invariant representations for an ac-
curate feature-level adaptation. Moreover, our model redefines depth estimation
at each stage as a gradual denoising-diffusion process with the guidance of bron-
choscopic visual conditions, which mitigates the learning bias associated with
GAN-based models. We conduct both qualitative and quantitative tests on real
clinical videos to validate our findings. The experimental results demonstrate the
superiority of our adversarial-diffusion strategy over non-transfer baselines and
the state-of-the-art methods on depth estimation for bronchoscopic navigation.

2 Method

Consider a source dataset S with virtual images Xs and corresponding depth
labels Ys, and a target dataset T that contains only target images Xt. We aim
to train our network using Xs, Ys, and Xt for depth estimation in the tar-
get dataset. To accomplish this, We propose an adversarial-diffusion framework
that involves two training stages: supervised learning and unsupervised domain-
adaptive learning. This process is depicted in Fig. 2, where the switch signifies
the transition between the different training stages.

2.1 Two-stage adversarial domain-adaptive framework

During the first training stage, virtual image-depth pairs from the source do-
main are used for supervised learning. Motivated by encoder-decoder structures
favored for visual tasks, we utilize a ResNet-50 [8] encoder to extract features
and construct visual conditions, and a decoder with deconvolution for depth re-
covery. The decoder consists of a sequence comprising a 3x3 deconvolution, a 3x3
convolution, and ends with a Sigmoid [22] activation function for normalization.

To mitigate the learning bias associated with conventional adversarial mod-
els, a diffusion-denoising process is introduced to gradually recover depth from
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Fig. 2. Overview of the proposed framework. In the first stage, we use virtual dataset
to train an encoder ES and a decoder DS . In the second stage, we integrate the pre-
trained encoder and a new encoder ET from the real domain in an adversarial manner.
For inference, ET and DS are connected to perform depth estimation on real images.

random noise. Given the issue of generating high-resolution depth maps with
various constraint-based methods, we adopt a strategy inspired by latent diffu-
sion [24]. Our model perform both the diffusion process q(xt|x0) and denoising
process p(xt−1|xt, c) within an encoded latent space (See Section 2.2). The re-
fined depth latent x0 ∈ RH

2 ×W
2 ×k, with latent dimension k, is mapped to the

depth estimation x ∈ RH×W×1 through the depth decoder.
In addition to single-step optimization within the latent space, the encoder

and decoder are also trained by directly minimizing the pixel-wise depth loss:

Lpixel(ds, d̂s) =

√
1

T

∑
i

(dis − d̂is)
2, (1)

where ds, d̂s denote the depth prediction and GT , T stands for the total number
of valid pixels of virtual images. The supervised loss is formulated by a weighted
sum of the single-step iterative loss and the pixel loss:

Lsuper = λ1Liter(xt,xt−1, cs) + λ2Lpixel(ds, d̂s), (2)

where xt and xt−1 denote latent distributions, cs represents the visual condition
extract from ES , λ1 and λ2 are experimentally set to 0.4 and 0.6.

In the second stage, we connect the pre-trained encoder ES to train a new en-
coder ET that extracts features from real images. During inference, the encoder
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ET is incorporated with the previously obtained decoder DS for depth estima-
tion. To minimize the distance between cross-domain distributions, we utilize a
discriminator DA from the standard GAN [7] to distinguish feature-level condi-
tions from each domain:

LadvD (E,x) = −Exs∼Xs
[logD(ES(xs))]− Ext∼Xt

[log(1−D(ET (xt)))], (3)

where ES and ET are optimized in an adversarial manner. The total loss is the
sum of adversarial LadvD and iterative diffusion Liter :

LUDA = LadvD (ES , ET , cs, ct) + Liter(yt,yt−1, cs, ct), (4)

where yt and yt−1 denote latent distributions, cs and ct represent visual condi-
tions from the source and target domain, respectively.

2.2 Diffusion-denoising process for depth recovery

As described in Section 2.1, we reframe the depth estimation as a diffusion-
denoising process to recover images blurred with random Gaussian noise. The
diffusion process q(xt|x0) is defined as:

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I), (5)

where noise is progressively added to the initial distribution x0 to obtain latent
noisy samples xt, with step t ∈ {0, 1, . . . , T}. ᾱt is the cumulative product defined
by ᾱt :=

∏t
s=0(1− βs), where βs denotes the noise variance.

In the denoising step, neural network ε(xt, t, c) is optimized to predict xt−1

from xt with visual conditions c guided, reversing the noise addition process:

p(xt−1|xt, c) = N (xt−1; ε(xt, t, c), σ
2
t I), (6)

where σ2
t denotes the transition variance. For faster denoising, we introduce

DDIM [28] to trade off computation for sample quality. The denoising model
ε(xt, t, c) is trained by minimizing the loss between diffusion results and denois-
ing predictions:

Liter = ∥xt−1 − ε(xt, t, c)∥2 (7)

To integrate the visual condition c ∈ RH
64×

W
64×k from encoders Es and ET

into the latent space, we develop a Condition-guided Denoising Module (CDM)
illustrated in Fig. 2. The condition c is processed by an upsampling and con-
volution layer, and projected to the same shape of latent zt ∈ RH

2 ×W
2 ×k. The

projected condition is element-wise summed with latent zt that refines through
a self-attention block and a standard bottleneck layer [8] that maintain local fea-
tures. The denoising output zt−1 is generated by employing a bottleneck, and
the DDIM inference process directed by preset diffusion parameters α and β.

3 Experiments

Datasets. We validate our approach on two bronchoscopic datasets for unsu-
pervised domain adaptation:
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Source domain The virtual dataset includes 12,824 image-depth pairs for su-
pervised learning. Detailed in the Appendix, airway trees are segmented from
patient CT scans and utilized to compute the 3D airway mesh. Given the ray-
casting renderer provided by Unity, we generate GT depth maps by simulating a
virtual camera with the intrinsic parameters on our bronchoscope. These gener-
ated image-depth pairs are then used for the supervised learning of our proposed
network, with a division of four-fifths for training and one-fifth for validation.

Target domain Our human recordings include three clinical sequences with a
total of 8,921 frames, each with an original resolution of 400× 400. To quantita-
tively evaluate our method, we navigate the virtual camera through segmented
airways to simulate all possible views. We validate and handpick 142 virtual
image-depth pairs that align with their target domain counterparts to serve as
ground-truth for quantitative evaluation.

Implementation details. Our model is trained under PyTorch 1.9 framework.
At each training stage, input images are resized to a resolution of 256×256 with
their horizontal or vertical flips randomly sampled for augmentation. We initially
train the supervised model with batch size of 64 for 100 epochs using the virtual
image-depth pairs. During the second stage, we train the targeted encoder with
batch size of 16 for 200 epochs, with a linear warm-up strategy applied during
the first one-fifth iterations. The Adam optimizer [14] is utilized with values β1

and β2 of 0.9 and 0.999, and a learning rate of 1×10−5. In diffusion process, the
timesteps for training and inference are set to 1000 and 20. For the comparison
against image-level adaptation, a CycleGAN [34] is trained to perform vanilla
transfer. To ablate our diffusion strategy, we remove the entire latent space for
all stages, rendering the model as a conventional adversarial framework.

Qualitative results. Fig. 3 visualizes a comparison of the proposed approach
against other methods on the clinical sequences. Performing a direct image-to-
image translation, the vanilla method shows capability simply within deepest
locations, leaving widespread errors in other areas. This observation can be at-
tributed to visual differences that primarily occur on the sides of lumens where
textures and lightning conditions vary significantly across domains. Although
the feature-level adversarial model improves the performance of depth estima-
tion, the model still suffers from inaccurate shapes and over-sharp edges due
to its one-shot sampling nature. Qualitative results illustrate that our proposed
framework offers more fine-grained control on generating complex and smooth
structures through successive diffusion steps, recovering the depth map reason-
ably well on both bifurcations and sidewalls.

Quantitative results. Table 1 presents an ablation study on adaptive strate-
gies and denoising modules. The vanilla method shows a severe performance drop
compared to feature-level adaptive methods. This decline can be explained that
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Fig. 3. Qualitative comparison among different domain-adaptive methods on real bron-
choscopic images. Red and yellow arrows show areas for detailed comparison on lumens
and carinas. Depth maps are scaled in mm.

style transfer models assume similar spatial distribution across domains, which
is impractical in this context due to the lack of standardized rendering configura-
tions. The proposed method outperforms the plain adversarial framework across
all metrics, demonstrating that iterative refinements from the diffusion strategy
potentially reduce one-shot mapping biases and generate accurate depth maps.
For ablation study on CDMs, we replace each module with a plain combination
of upsampling layers that align feature maps’ shapes and DDIM that recovers
depth distribution. Quantitative results show that CDMs with attention mech-
anism and bottlenecks better preserves the scene’s structure.

Table 1. Ablation study on adaptive strategies and denoising modules. RMSE, MAE,
and REL are metrics quantifying errors, δ denotes the threshold accuracy [6, 15]. A-D
represents our proposed adversarial-diffusion strategy.

Method
Error metrics ↓ Accuracy metrics ↑

RMSE MAE REL δ < 1.25 δ < 1.252 δ < 1.253

Vanilla 36.0982 25.5377 0.5209 0.2123 0.4880 0.6215
Adversarial 11.3365 10.0919 0.2649 0.6287 0.8451 0.9520
A-D w/o CDM 8.0241 7.2980 0.2105 0.8062 0.9531 0.9774
A-D w/ CDM 6.0822 4.1155 0.1729 0.8243 0.9635 0.9848
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Table 2. Quantitative results of the proposed method against state-of-the-art methods
using in natural and endoscopic scenes.

Method
Error metrics ↓ Accuracy metrics ↑

RMSE MAE REL δ < 1.25 δ < 1.252 δ < 1.253

mono [6] 16.8295 13.4934 0.3291 0.6410 0.8577 0.9505
AdaDepth [15] 14.9204 11.9009 0.2929 0.6725 0.8668 0.9577
TransDepth [33] 12.9050 10.8566 0.2702 0.7024 0.9020 0.9662
3cGAN [1] 13.2942 11.7459 0.2819 0.6890 0.8706 0.9623
Dense [18] 10.0921 9.2453 0.2650 0.7602 0.9212 0.9704
Proposed 6.0822 4.1155 0.1729 0.8243 0.9635 0.9848

Fig. 4. Examples of geometry reconstruction from predicted depth maps. The middle
column displays point clouds projected with camera intrinsics, while the right column
exhibits spatial alignments between pre- and intra-procedural structures.

Furthermore, our method achieves the best performance against various non-
transfer baselines and state-of-the-art approaches on endoscopic depth estima-
tion, as shown in Table 2. Showing some merits on endoscopic depth percep-
tion, [1] poses extra training burden and instability by involving six generators
and discriminators, and [18] leveraging 3D structure from sinus images tends to
underperform in feature-scarce bronchoscopic environments.

Reconstruction visualizations. Geometry reconstruction serves as a prereq-
uisite of bronchoscopic navigation pipelines. We re-project the depth images with
bronchoscope’s intrinsics to create geometrical point clouds. The generated point
clouds are then manually registered to the airway structure from pre-procedural
CT scans, as shown in Fig.4. Visualizations confirm that our method accurately
captures the scene’s structure across various morphologies of carinas.

4 Conclusion

In this work, we propose an adversarial diffusion model for domain-adaptive
depth estimation on bronchoscopic images. Based on the observation of the do-
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main gap between virtual and real images in bronchoscopy, the model introduces
a two-stage strategy and learns domain-invariant representations for an accurate
feature-level adaptation. Moreover, our model redefines depth estimation as a
gradual denoising-diffusion process with the guidance of bronchoscopic visual
conditions, which reduces the learning bias and generates detailed depth maps.
Experiments on clinical sequences show the effectiveness of the proposed method
on depth estimation as well as geometry reconstruction, demonstrating its po-
tential for bronchoscopic navigation pipelines.
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