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Abstract. Effectively segmenting Crohn’s disease (CD) from computed
tomography is crucial for clinical use. Given the difficulty of obtaining
manual annotations, more and more researchers have begun to pay at-
tention to weakly supervised methods. However, due to the challenges of
designing weakly supervised frameworks with limited and complex med-
ical data, most existing frameworks tend to study single-lesion diseases
ignoring multi-lesion scenarios. In this paper, we propose a new local-
to-global weakly supervised neural framework for effective CD segmen-
tation. Specifically, we develop a novel weak annotation strategy called
Target-level Incomplete Annotation (TIA). This strategy only annotates
one region on each slice as a labeled sample, which significantly relieves
the burden of annotation. We observe that the classification networks
can discover target regions with more details when replacing the in-
put images with their local views. Taking this into account, we first de-
sign a TIA-based affinity cropping network to crop multiple local views
with global anatomical information from the global view. Then, we lever-
age a local classification branch to extract more detailed features from
multiple local views. Our framework utilizes a local views-based class
distance loss and cross-entropy loss to optimize local and global clas-
sification branches to generate high-quality pseudo-labels that can be
directly used as supervisory information for the semantic segmentation
network. Experimental results show that our framework achieves an av-
erage DSC score of 47.8% on the CD71 dataset. Our code is available at
https://github.com/HeyJGJu/CD_cTIA.
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1 Introduction

Crohn’s disease (CD) is an unexplained inflammatory bowel disease that can oc-
cur anywhere along the entire intestinal tract, has a progressive and destructive



2 J. Ju et al.

Fig. 1. Illustrations of different annotation forms. Blue and red represent ground truth
and different annotation forms, respectively. (a) point annotation, (b) scribble an-
notation, (c) bounding box annotation, (d) (e) incomplete annotations, and (f) TIA
annotation.

course and is increasing in incidence worldwide [21]. Intervening and initiating
treatment for CD early can prevent further progression of the disease and im-
prove survival rates. Computed tomography (CT) plays a crucial role in the
diagnosis of CD as an auxiliary technology that can characterize the location of
the lesion and its relationship to surrounding tissue. Clinically, the segmentation
of CD from CT is performed manually by radiologists. Given the escalating an-
nual incidence of CD, this process greatly augments the workload of radiologists.
Therefore, many efforts have been made to automatically segment lesions [8, 3].
The current impressive performance is mainly attributed to the availability of
large volumes of manually labeled datasets. However, manually labeling these
datasets is a time-consuming and labor-intensive task. Recently, to reduce the
cost of annotation, researchers have begun to pay attention to weakly super-
vised semantic segmentation methods. Weakly supervised methods utilize cost-
effective weak annotations (as shown in Figure 1) as supervision signals, such as
image-level annotations [5, 2], points [20, 10], scribbles [16, 25], bounding boxes
[1, 9], and incomplete annotations [23]. These labels enable deep models to learn
from large amounts of data with minimal human annotation effort. However,
they simply annotate the lesion and cannot provide accurate lesion boundaries.
Moreover, labeling each lesion in every medical image can be tedious and incon-
venient, especially for multi-lesion applications (such as Crohn’s disease). This
remains a heavy burden for radiologists.

A natural observation inspires us that in cases of multi-lesion diseases, where
a specific disease appears in multiple areas of a single slice, the texture informa-
tion of each area is often similar to the others to a certain extent. This means
that the sampled partial areas in all slices should have consistent texture infor-
mation with the distribution of texture information in all lesion areas. Based
on this observation, we innovatively develop a novel sparse annotation strategy
called Target-level incomplete annotation (TIA) by considering the similarities
between different regions of the same disease. This strategy involves annotating
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only one region per slice as a labeled sample (as shown in Figure 1 (f)), which
provides accurate boundaries of the target while reducing labeling costs.

We empirically find that local views input into network training can help dis-
cover more details about undiscovered semantic regions. Thus, we further pro-
pose a novel local-to-global weakly supervised multi-lesion segmentation frame-
work based on TIA to explore the discriminability area in mining strategies by
utilizing local views that are cropped from the global view according to TIA. The
framework has two parallel branches i.e., the global classification branch and the
local classification branch. Specifically, in the global classification branch, we first
adopt a multi-scale strategy to obtain global localization information to handle
the variable scale of lesions in CD images. We design an affinity cropping network
in the local classification branch to crop local views containing global anatomi-
cal information using TIA as a reference. When the obtained local views are fed
into the classification network for training, accurately locating distinguishable
regions can challenge traditional cross-entropy loss supervision. Thus, we pro-
pose a local views-based class distance loss that enhances the semantic feature
distance between the target and backgrounds. Finally, we propose a new weight-
ing strategy to reweight the results of TIA and two classification branches to
generate reliable pseudo-labels. Experimental results show that our framework
outperforms other state-of-the-art methods.

2 Method

In Figure 2, we delineate a new local-to-global weakly supervised multi-lesion
segmentation framework based on TIA. Specifically, we design global views and
local views as the input for the classification branch respectively, and jointly
optimize it with local views-based class distance loss and classification loss to
obtain more accurate pseudo-labels. Then, we design a joint weight assignment
strategy to reweight the results of the two classification branches and TIA to
generate the final pseudo-labels. We next detail the framework as follows.

2.1 Global classification branch

A 3D CT image dataset consists of 2D slice sequences for each CD case. Each
case is divided into continuous slice sequences DN×H×W = {D1, D2, ..., DN},
where N , H, and W represent the number of slices scanned for a case, height,
and width, respectively. These sequences are further divided into two categories,
diseased slice sequences Xo = {D1, D2, ..., Dl} with k (k ≥ 1) lesions, and healthy
slice sequences Xu = {Dl+1, Dl+2, ..., DN} with k (k = 0) lesions. We directly
input Xo and Xu into the global classification branch for training. However, the
different scales of lesions in CD images can seriously affect the feature extraction
ability of the classification network. To address this issue, we incorporate a multi-
scale strategy into the classification network. This network can obtain multi-scale
information on the global view through simple convolutional transformation.
Specifically, we add dilated convolution into the last three layers. Details of our
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Fig. 2. Illustration of our proposed framework. Our framework contains two paral-
lel branches i.e., the global classification branch and the local classification branch,
to generate initial pseudo-labels. Then, we employ a weight assignment strategy to
combine TIA and the outputs from the two classification branches to generate final
pseudo-labels.

network settings are reported in Section 3. We apply global average pooling
(GAP) in the final convolution layer. Then, we classify its output using fully
connected layers (FC). Finally, we use the weights of the FC to obtain the class
activation map (CAM) for each class. Original CAMs can highlight the most
prominent areas in medical images, but they still contain some non-target areas
that are mislabeled pixels. Therefore, post-processing [11] is needed after getting
the original CAMs to generate more reliable pseudo-labels Mgc.

Fig. 3. Illustration of our proposed affinity cropping network.

2.2 Local classification branch

As described in the introduction, a local classification network can discover more
discriminative regions by focusing on local views. Based on this observation, we
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design a local classification branch to assist the global classification branch in
locating more complete target regions. Random cropping [7] on a global view
of medical images to obtain local views can destroy anatomical structure in-
formation inside the image or even result in no target in the local views, thus
misleading the model learning. In our work, we design a novel cropping strategy,
termed the affinity cropping network, which uses TIA annotation to accurately
locate the target and includes global anatomical information in each local view.
As shown in Figure 3, Xo, Xu, and y are the inputs of the affinity cropping
network, where Xo and Xu are the global views and y is the TIA annotation
of Xo. We crop Xo based on y positioning to obtain foreground local views
S = {S1, S2, ..., Sl}. At the same time, we crop Xu based on y positioning and
randomly crop multiple times around the cropped area to obtain n background
local views V = {V1, V2, ..., Vn}. Next, we multiply each pixel in the local view
with all the pixels in the corresponding global view to generate the affinity co-
efficient Pi of each pixel in the local view. The mathematical expression for
calculating Pi is as follows:

Pi = −
∑n

i=1 AiOi√∑n
i=1 A

2
i

√∑n
i=1 O

2
i

, (1)

where A is the pixel matrix for global view conversion, O is the pixel matrix
for local view conversion, and i represents the pixel position index. Then, we
normalize the calculated Pi to obtain the final affinity coefficient. Finally, we
add the affinity coefficient to the corresponding pixels in the pixel matrix O to
obtain the affinity matrix Q. Every pixel of Q contains anatomical information
for global view. The mathematical expression for calculating Q is as follows: Q =
Oi +O

′

i = Oi + SF (Pi)(i ∈ 1, 2, ...n), where SF (·) represents the normalization
operation and i means the pixel position index. We use the local views obtained
from the affinity cropping network as input into the local classification branch.
Considering the traditional cross-entropy loss lcls cannot accurately distinguish
background regions in medical images with unclear background differences. To
minimize background interference, we design a local view-based class distance
loss during the training process. We use K-means to establish the cluster center
sc, and then we develop a loss function Llcd that increases the distance between
foreground and background in local views. This process makes similar classes
more alike and discrepancies between different classes more pronounced. The
local view-based class distance loss can be expressed mathematically as:

Llcd =
n∑

i=1

d(si, sc)−
n∑

j=1

d(vj , sc), (2)

where d(·, ·) represents the distance between two pixels, si is the foreground
pixel, and vj means the background pixel. This branch still utilizes global average
pooling in the last layer, uses the connection layer to calculate probability values,
and finally outputs the initial CAM. The same post-processing operation is also
used to obtain reliable pixel-level annotation Mlc.



2.3 Joint weight assignment strategy

To take full advantage of TIA and the results of both classification branches,
we propose a joint weight assignment strategy based on TIA. We believe that
what is predicted simultaneously in each branch is more likely to be the target
region Mf = Mgc∩Mlc, so we assign higher weights, while the regions predicted
Ms = (Mgc − Mlc) + (Mlc − Mgc) by only one branch have relatively smaller
weights. Moreover, we also apply the TIA, to indicate the target region y, and
its weight is set to 1. Finally, we combine these weighted regions to generate the
final pseudo-labels Mo. Mo can be expressed as: Mo = y +Wf ·Mf +Ws ·Ms,
where Wf represents the weight of Mf , and Ws represents the weight of Ms.

3 Experiments

Fig. 4. Qualitative segmentation results on CD71. Blue, yellow, and pink represent the
ground truth, predicted error, and the intersection of the predicted and ground truth.

3.1 Dataset and evaluation metric

We conduct experiments on the CD71 dataset to verify the effectiveness of our
framework. This dataset is sourced from cooperative hospitals and contains raw
CT data from 71 patients with Crohn’s disease of the small intestine. We divide
the dataset into a training set, a validation set, and a test set containing 51,
10, and 10 cases respectively. The TIA labels of the training set and validation
set and the fine labels of the test set are annotated by experts. We evaluate the
segmentation performance using the average Dice-Sørensen coefficient (DSC)
[22] and mean intersection-over-union (mIoU) [18].
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3.2 Implementation details

Our framework is implemented by PyTorch and performed on two NVIDIA GTX
3080 devices. We choose ResNet50 [4] as the backbone for two classification
branches. We engage dilated convolution for the last three ResNet blocks in the
global classification branch. The dilated rate for the last third layer is 1, for the
last second layer is 2, and 5 for the last layer. The stochastic gradient descent
optimizer is used to train the models with an initial learning rate of 0.0001. The
hyperparameters Wf and Ws are set to 0.8 and 0.5, respectively.

Table 1. Quantitative comparisons of existing state-of-the-art methods on CD71 val-
idation and test sets. (SUP: supervision signal, I: image-level annotation, B: bounding
box, S: scribble, U: incomplete annotation, and TIA: our proposed annotation form.)

Method Backbone SUP. val(DSC) test(DSC) val(mIOU) test(mIOU)
RCF [17] VGG-16 I 31.65 32.12 20.59 21.81
WSSL [19] VGG-16 B 33.17 34.99 22.75 23.41
Scribble_Saliency [25] VGG-16 S 36.32 36.01 25.78 25.59
OAA [6] ResNet-101 I 35.84 36.10 24.66 25.63
Ood [13] ResNet-101 I 37.20 37.46 27.68 27.83
CGNet [12] ResNet-101 I 37.42 38.15 27.81 28.47
Mask R-CNN+FL [15] ResNet-101 U 38.58 38.94 28.93 29.52
TransCAM [14] ResNet-38 I 39.88 39.40 30.77 30.36
L2g [7] ResNet-101 I 39.05 39.92 30.07 30.89
VOPC [2] ResNet-50 I 40.45 41.13 30.91 31.25
DAST [24] COPLE-Net U 42.91 42.41 32.90 32.87
Ours ResNet-50 TIA 46.79 47.80 37.86 38.41

3.3 Comparison experiment

To demonstrate the effectiveness and superiority of our framework, we conduct
11 sets of experiments comparing it to the image-level annotation segmentation
models (RCF [17], OAA [6], Ood [13], CGNet [12], L2g [7], TransCAM
[14], VOPC [2]), bounding box annotation segmentation model (WSSL [19]),
scribble annotation segmentation model (Scribble_Saliency [25]), and incom-
plete annotation segmentation models (Mask R-CNN+FL [15], DAST [24]).
We present our detailed comparison results in Table 1. Our proposed frame-
work consistently outperforms other methods on two evaluation indicators and
achieves a score of 47.80% DSC. We find that inaccurate boundary information
in weak annotations is the main reason for poor performance in these methods,
significantly affecting segmentation performance. L2g [7] also uses a dual-branch
classification network to generate pseudo-labels, but the DSC score of our frame-
work increases by 7.88%. The results show that it is necessary to exploit the
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global anatomical information of medical images to assist the local classification
branch locate the target area. We further visualize the prediction results of our
framework and state-of-the-art methods to compare segmentation effects more
intuitively. As shown in Figure 4, the single-branch method (i.e., RCF, OAA,
Ood, CGNet, and TransCAM) can only provide an approximate location of the
target area, whereas the two-branch method (i.e., L2g) locates the target area
more completely. The more detailed information provided by the local classi-
fication branch has a positive effect on target positioning. Ours achieves more
accurate localization and finer results than L2g, thanks to the effectiveness of
our multi-scale strategy and affinity cropping network.

3.4 Ablation study

We conduct an ablation study to assess the importance of each proposed compo-
nent. Table 2 reports the overall accuracies on the test set. In our experiments,
G-L-M-ACL provides the best performance, mainly because our framework adds
local details while solving the problem of multi-scale and similar lesions and
backgrounds to obtain finer segmentation results. These experimental results
demonstrate the effectiveness of each component and the rationality of this de-
sign for CD segmentation tasks.

Table 2. Ablation study on CD71 dataset. G represents the global classification branch,
L represents the local classification branch, M represents the multi-scale strategy, ACL
represents the affinity cropping networks and the local view-based class distance loss.

G L M ACL mIOU DSC
4.7 11.3

✓ 8.8 17.1
✓ 9.4 19.7

✓ ✓ 17.5 27.3
✓ ✓ 17.8 27.5

✓ ✓ 20.7 29.7
✓ ✓ ✓ 27.9 37.6
✓ ✓ ✓ ✓ 38.4 47.8

4 Conclusions

In our work, we propose an effect-cost balancing annotation strategy, i.e., Target-
level Incompletely Annotation (TIA), and verify its high efficiency. We then apply
this annotation form to a weak supervised multi-lesion segmentation setting.
We design a novel local-to-global weakly supervised multi-lesion segmentation
framework based on TIA. Our framework leverages the knowledge from two
views to generate more precise pseudo-labels. We conduct numerous experiments
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to validate the effectiveness of our TIA and framework. Although we effectively
exploit the observation that the distribution of a certain lesion in a single slice
to fit the overall lesions distribution, there is still multi-slice prior information
that is not considered, which we will explore further in the future.

Acknowledgments. This work was partially supported by National Natural Sci-
ence Foundation of China under grant agreements Nos. 62073218, 62273232, 82150301,
62133012. It also partially supported by the Kunshan City Traditional Chinese Medicine
(TCM) Science and Technology Development special fund (KZYY202302), the Key
research and development projects of Kunshan Ministry of Science and Technology
(KS1946), and the Suzhou Medical Association "Imaging Medical Star" general project
(2023YX-M04).

Disclosure of Interests. The authors declare that they have no known competing
financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

References

1. Chibane, J., Engelmann, F., Anh Tran, T., Pons-Moll, G.: Box2mask: Weakly
supervised 3d semantic instance segmentation using bounding boxes. In: European
Conference on Computer Vision. pp. 681–699. Springer (2022)

2. Feng, J., Wang, X., Li, T., Ji, S., Liu, W.: Weakly-supervised semantic segmen-
tation via online pseudo-mask correcting. Pattern Recognition Letters 165, 33–38
(2023)

3. Gao, Y., Dai, Y., Liu, F., Chen, W., Shi, L.: An anatomy-aware framework for
automatic segmentation of parotid tumor from multimodal mri. Computers in
Biology and Medicine 161, 107000 (2023)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

5. Hsieh, Y.H., Chen, G.S., Cai, S.X., Wei, T.Y., Yang, H.F., Chen, C.S.: Class-
incremental continual learning for instance segmentation with image-level weak
supervision. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 1250–1261 (2023)

6. Jiang, P.T., Han, L.H., Hou, Q., Cheng, M.M., Wei, Y.: Online attention accumu-
lation for weakly supervised semantic segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44(10), 7062–7077 (2021)

7. Jiang, P.T., Yang, Y., Hou, Q., Wei, Y.: L2g: A simple local-to-global knowledge
transfer framework for weakly supervised semantic segmentation. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. pp.
16886–16896 (2022)

8. Ju, J., Li, J., Chang, Z., Liang, Y., Guan, Z., Xu, P., Xie, F., Wang, H.: Incor-
porating multi-stage spatial visual cues and active localization offset for pancreas
segmentation. Pattern Recognition Letters 170, 85–92 (2023)

9. Kervadec, H., Dolz, J., Wang, S., Granger, E., Ayed, I.B.: Bounding boxes for
weakly supervised segmentation: Global constraints get close to full supervision.
In: Medical imaging with deep learning. pp. 365–381. PMLR (2020)



10 J. Ju et al.

10. Khalid, N., Froes, T.C., Caroprese, M., Lovell, G., Trygg, J., Dengel, A., Ahmed,
S.: Pace: Point annotation-based cell segmentation for efficient microscopic image
analysis. In: International Conference on Artificial Neural Networks. pp. 545–557.
Springer (2023)

11. Krähenbühl, P., Koltun, V.: Parameter learning and convergent inference for dense
random fields. In: International Conference on Machine Learning. pp. 513–521.
PMLR (2013)

12. Kweon, H., Yoon, S.H., Kim, H., Park, D., Yoon, K.J.: Unlocking the potential
of ordinary classifier: Class-specific adversarial erasing framework for weakly su-
pervised semantic segmentation. In: Proceedings of the IEEE/CVF international
conference on computer vision. pp. 6994–7003 (2021)

13. Lee, J., Oh, S.J., Yun, S., Choe, J., Kim, E., Yoon, S.: Weakly supervised semantic
segmentation using out-of-distribution data. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 16897–16906 (2022)

14. Li, R., Mai, Z., Zhang, Z., Jang, J., Sanner, S.: Transcam: Transformer attention-
based cam refinement for weakly supervised semantic segmentation. Journal of
Visual Communication and Image Representation 92, 103800 (2023)

15. Liu, K., Mokhtari, M., Li, B., Nofallah, S., May, C., Chang, O., Knezevich,
S., Elmore, J., Shapiro, L.: Learning melanocytic proliferation segmentation
in histopathology images from imperfect annotations. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 3766–3775
(2021)

16. Liu, X., Yuan, Q., Gao, Y., He, K., Wang, S., Tang, X., Tang, J., Shen, D.: Weakly
supervised segmentation of covid19 infection with scribble annotation on ct images.
Pattern recognition 122, 108341 (2022)

17. Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features
for edge detection. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3000–3009 (2017)

18. Nowozin, S.: Optimal decisions from probabilistic models: the intersection-over-
union case. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 548–555 (2014)

19. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-
supervised learning of a deep convolutional network for semantic image segmenta-
tion. In: Proceedings of the IEEE international conference on computer vision. pp.
1742–1750 (2015)

20. Qu, H., Wu, P., Huang, Q., Yi, J., Yan, Z., Li, K., Riedlinger, G.M., De, S.,
Zhang, S., Metaxas, D.N.: Weakly supervised deep nuclei segmentation using par-
tial points annotation in histopathology images. IEEE transactions on medical
imaging 39(11), 3655–3666 (2020)

21. Roda, G., Chien Ng, S., Kotze, P.G., Argollo, M., Panaccione, R., Spinelli, A.,
Kaser, A., Peyrin-Biroulet, L., Danese, S.: Crohn’s disease. Nature Reviews Disease
Primers 6(1), 22 (2020)

22. Setiawan, A.W.: Image segmentation metrics in skin lesion: accuracy, sensitivity,
specificity, dice coefficient, jaccard index, and matthews correlation coefficient. In:
2020 International Conference on Computer Engineering, Network, and Intelligent
Multimedia (CENIM). pp. 97–102. IEEE (2020)

23. Wang, S., Nie, D., Qu, L., Shao, Y., Lian, J., Wang, Q., Shen, D.: Ct male pelvic
organ segmentation via hybrid loss network with incomplete annotation. IEEE
transactions on medical imaging 39(6), 2151–2162 (2020)



A Weakly-supervised Multi-lesion Segmentation Framework with TIA 11

24. Yang, S., Wang, G., Sun, H., Luo, X., Sun, P., Li, K., Wang, Q., Zhang, S.:
Learning covid-19 pneumonia lesion segmentation from imperfect annotations via
divergence-aware selective training. IEEE Journal of Biomedical and Health Infor-
matics 26(8), 3673–3684 (2022)

25. Zhang, J., Yu, X., Li, A., Song, P., Liu, B., Dai, Y.: Weakly-supervised salient
object detection via scribble annotations. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. pp. 12546–12555 (2020)


