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Abstract. Despite substantial progress in utilizing deep learning meth-
ods for clinical diagnosis, their efficacy depends on sufficient annotated
data, which is often limited available owing to the extensive manual ef-
forts required for labeling. Although prevalent data synthesis techniques
can mitigate such data scarcity, they risk generating outputs with dis-
torted anatomy that poorly represent real-world data. We address this
challenge through a novel integration of anatomically constrained syn-
thesis with registration uncertainty-based refinement, termed Anatomic-
Constrained medical Image Synthesis (ACIS). Specifically, we (1) gener-
ate the pseudo-mask via the physiological density estimation and Voronoi
tessellation to represent the spatial anatomical information as the im-
age synthesis prior; (2) synthesize diverse yet realistic image-annotation
guided by the pseudo-masks, and (3) refine the outputs by registra-
tion uncertainty estimation to encourage the anatomical consistency
between synthesized and real-world images. We validate ACIS for im-
proving performance in both segmentation and image reconstruction
tasks for few-shot learning. Experiments across diverse datasets demon-
strate that ACIS outperforms state-of-the-art image synthesis techniques
and enables models trained on only 10% or less of the total training
data to achieve comparable or superior performance to that of models
trained on complete datasets. The source code is publicly available at
https://github.com/Arturia-Pendragon-Iris/VonoroiGeneration.

Keywords: Data augmentation· Few-shot learning · Segmentation · Im-
age reconstruction

1 Introduction

In recent times, artificial intelligence and deep learning (DL) techniques have
assumed an indispensable role in medical imaging analysis and computer-aided
diagnosis (CAD) [1]. These approaches have exhibited remarkable efficacy across
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diverse applications, including disease classification, automated organ recon-
struction, lesion segmentation, image super-resolution, and denoising. However,
the efficacy of a deep-learning model heavily relies on the availability of large-
scale, high-quality datasets with corresponding meticulous annotations or ground
truth [2]. Unfortunately, such datasets cannot be always easily accessible due to
the substantial investments of time and labor for meticulous annotation, limited
samples for rare diseases, and ethical and privacy considerations surrounding
medical data [3]. This paucity of adequate training data imposes significant con-
straints on DL models, especially for data-intensive applications, consequently
impeding clinical adoption of DL-based CAD [4].

To overcome these challenges, various data augmentation strategies have been
proposed, which can be broadly classified into two overall categories [5]: original
data transformation and artificial data synthesis. The former encompasses the
application of one or more image-transforming techniques to existing samples,
ranging from affine transformations to pixel-level gray-scale transformations [6].
While demonstrating some ability to enhance network robustness, these tech-
niques remain fundamentally limited in their capacity to amplify generaliza-
tion beyond the confines of the initial training data [7]. In contrast, techniques
for image synthesis, such as generative adversarial networks (GANs) and diffu-
sion models [8], hold promise for producing more diverse artificial samples [3].
However, only limited studies have reported the synthesis of 3D volumetric im-
ages with corresponding annotations [9]. In practice, numerous medical imag-
ing modalities, including computed tomography (CT), and magnetic resonance
imaging (MRI), involve 3D volumetric images, with segmentation frequently also
performed in a 3D context [10]. Moreover, the synthesized samples can lack con-
straints enforcing realistic anatomy and the consistency between images and an-
notations [11], and may not accurately represent real-world data. Consequently,
unconstrained data synthesis strategies do not reliably improve segmentation
models or confer clinical utility.

To address these limitations, we propose a novel medical image synthesis
approach termed Anatomic-Constrained medical Image Synthesis (ACIS) (Fig.
1), enabling the synthesis of new data with realistic anatomy to facilitate few-
shot learning. The synthesis network is guided by our proposed pseudo-mask,
which imparts anatomical priors to the synthesis process. To achieve this, we de-
vise a physiological density estimation method and spatial sampling technique,
allowing regions with abundant anatomical information to be represented by
more sampling points. Voronoi tessellation [13] is then utilized to generate the
pseudo-mask based on these points (Fig. 1.a). Next, we develop a multi-stage
image-annotation synthesis workflow, in sequence synthesizing the pseudo-mask,
annotation, and associated image (Fig. 1.b). To further improve anatomical re-
alism, we devise a refinement module of the entire network (Fig. 1.c). The goal is
that via registration between real-world and synthesized images, the correspond-
ingly deformed real-world and synthesized annotations are maximally similar.
We employ appearance uncertainty to quantify this similarity, using it as a re-
ward for refinement.



Fig. 1. The overview of our proposed ACIS framework, which consists of a pseudo-mask
generation via anatomical-aware sampling (Step 1), a multi-stage image-annotation
synthesis workflow (Step 2), and registration uncertainty estimation for anatomical
improvement (Step 3).

We assess the efficiency of ACIS on both high-level segmentation tasks and
low-level image reconstruction tasks. The validation of the latter has been limited
reported thus far [14]. We select chest CT as the imaging modality for this study
and utilize lung lobe segmentation to validate the benefits of employing ACIS
for segmentation. Chest CT contains lots of anatomical structures, including
heart, airways, vascular system, and lung fissures [12], and an optimal lung lobe
segmentation relies heavily on global anatomy rather than local features [15],
thus enabling an evaluation of the anatomical realism of the synthesized results.
In this study, we validate the efficacy of ACIS across nine clinical tasks using
two distinct datasets. Few-shot learning with ACIS significantly improves perfor-
mance compared to other data synthesis techniques, approaching or exceeding
models trained on full datasets. Moreover, these performance gains enhanced as
the amount of available training data increased. Collectively, the experiments
demonstrate that ACIS can effectively retain realistic anatomy to synthesize
medical images for improving few-shot learning.

2 Method

The proposed ACIS methodology, as illustrated in Fig.1, encompasses three
integral components: pseudo-mask generation via anatomical-aware sampling
(Sec 2.1), a multi-stage image-annotation synthesis workflow (Sec 2.2), and
registration-driven refinement (Sec 2.3). The pseudo-mask will be derived from
real-world data, whereupon the synthesis workflow will first learn to generate
similar pseudo-masks to provide anatomical guidance for subsequent image-
annotation synthesis. After the initial training of the synthesis workflow, reg-



istration between real-world and synthesized image-annotation pairs will then
be employed further to refine the consistency and realism of the synthesized
anatomy. ACIS framework can be deployed on both 2D and 3D images without
technical differences.

2.1 Pseudo-mask Generation via Anatomical-awareness Sampling

To address the concerns of anatomical distortion in images synthesized directly
from noise, we introduce the super-pixel pseudo-mask to provide an anatomical
prior to guide image synthesis. The main idea involves point-wise sampling of
physiological information to represent and impart general anatomy for directing
synthesis. First, we develop a physiological density estimation technique, en-
abling higher sampling probability in high-density physiological regions, while
avoiding invalid sampling of background. Given a real-world image x, we as-
sume that regions with significant fluctuations in image intensity, such as the
hilum, spine, and vasculature, likely contain abundant physiological information
necessitating intensive sampling. In contrast, smoother regions with sparser fluc-
tuations, such as background, can be represented by fewer points. Specifically,
We employ the Canny filter [16] to identify the image regions with great gradient
and extract the binary edges e, then we utilize the kernel density estimation [17]
to calculate the spatial density to these extracted edges:
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where x̂j , j = 1, 2 · · ·n are n points randomly selected from e uniformly, to avoid
the great computation consumption for involving all points in e. fi is the es-
timated density in the point xi ∈ x. K (·) is the kernel function and we use
the Gaussian function K (x) = 1√
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2 in our study. d (xi, xj) denotes the Eu-
clidean distance between xi and xj , while h is the bandwidth. The hyperparam-
eter selection is described in the Supplementary Materials. Fast kernel density
estimation algorithm [18] can also be employed to accelerate the calculation.

Following f as the spatial probability distribution, we randomly sample N
points pk, k = 1, 2 · · ·N from x. A Voronoi tessellation [19] of the domain is then
constructed based on these sampling points. Each Voronoi cell is assigned the
image value of its contained sampling point:

Im (xi|xi ∈ C (pk)) = I (pk) . (2)

I is the raw image intensity and Im is the image intensity of the pseudo-masks.
C (pk) is the Voronoi cell for the point pk. By the defining properties of a Voronoi
tessellation, each cell has exactly one sample point, and all pixels in a cell take
the value of their nearest sampled point [13]. This yields a pseudo-mask that can
provide the essential anatomical prior for subsequent image synthesis, without
imposing excessive constraints that would limit output diversity.



2.2 Image-to-annotation Synthesis from Unsupervised
Pseudo-masks

Our synthetic images are generated conditional on the pseudo-masks. To en-
hance the diversity of synthetic images under limited training data, we develop a
technique for pseudo-mask synthesis and employ a pseudo-mask generator with
a discriminator [20] as the backbone. Pseudo-masks are first derived from real-
world data via the method described in Section 2.1. Owing to the randomness of
sampling, our approach can produce unlimited masks, enabling the mask synthe-
sis model to learn to generate analogous pseudo-masks as anatomical guidance.
Moreover, we also implement an annotation generator to synthesize the multi-
label segmentation annotations [9]. The synthesized pseudo-masks as well as the
annotations will be concatenated along the channel dimension and then sent to
the image generator.

We then develop a conditional pix2pix generative model [21] with an im-
age discriminator to synthesize images and corresponding annotations from the
pseudo-masks. The training comprises two phases: real-world image-based ini-
tialization and fine-tuning on generated pseudo-masks. Initially, we utilize the
pseudo-masks and annotations from real-world images to jointly optimize the
generator and discriminator, with an objective including a reconstruction con-
sistency loss and the adversarial loss. The reconstruction consistency loss is im-
plemented by the mean square error between the synthesized and the real-world
image. Subsequently, we fine-tune the generator on synthesized pseudo-masks.
The discriminator judges whether the synthesized image appears realistic, and
evaluates the consistency between the synthesized image, pseudo-mask, and the
synthesized annotation.

2.3 Refinement via Registration-based Uncertainty Estimation

To further enhance the anatomical realism of the synthesized images, we propose
an innovative refinement approach. Let x and y signify the real-world image
and annotation correspondingly, and x̂ and ŷ the synthesized counterparts. The
rationale underpinning this proposition is that upon registering x to x̂ via a
deformation field ϕ as x ◦ ϕ → x̂, we encourage for the deformed annotation
y ◦ ϕ to likewise approximate ŷ. The appearance uncertainty [22] is leveraged to
quantify the divergences between the two annotations post-registration.

Σ̂2
app =

1
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2
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2
)
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Here ϕ and φ represent the deformation field in the registration from x to x̂,
and x̂ to x, respectively. We utilize the diffeomorphic deformation with ϕt and
φt, denoting the deformation field produced by t-th forward pass across T to-
tal steps [23]. Our objective is to minimize the appearance uncertainty for the
synthesized images and annotations.



However, directly utilizing the appearance uncertainty as the loss function
may be impractical given both 3D generation and registration networks occu-
pying substantial video memory and computing resources [24], rendering end-
to-end training on commonly available GPUs impossible (e.g. NVIDIA RTX
A6000 with 48GB memory). Therefore, we employ a reinforcement learning-
driven training approach, treating the appearance uncertainty as the reward
and leveraging policy gradient techniques [25] for parameter updates. We first
train the framework using the methods in Sections 2.1 and 2.2; subsequently,
this reinforcement learning strategy is utilized to refine the entire network.

3 Results

3.1 Datasets and Experiment Settings

To evaluate the ACIS strategy on computer-vision tasks, we leveraged two dis-
tinct datasets TLobes and PENet chest CT [26] for 3D segmentation and image
reconstruction evaluation, respectively. The TLobes is an in-house dataset, pro-
viding annotations of the five lung lobes and heart; the PENet dataset is a
public dataset consisting of CT pulmonary angiography. The voxel intensity of
all CT underwent truncation within the specified Hounsfield Unit (HU) window
of [−1000, 600] and subsequently normalization to [0, 1]. The size of CT volume
resolution was normalized to 192× 192× 160 for 3D synthesis and segmentation
evaluation, while the size of CT slices was normalized to 256×256 for 2D synthe-
sis and reconstruction evaluation. We compared ACIS against StyleGAN [27],
MedGen3D [9], and V2UM2I [11]. Additionally, we implemented ACIS- with-
out the proposed anatomical refinement strategy to validate its efficacy. We
employed image augmentation techniques including random flipping, random
rotation, random affine transformations, and random histogram shifting during
the training process.

Segmentation: We implemented two models, 3DUNet [28] and MedNext [29],
for image segmentation tasks. The 3DUNet comprised 4 encoder and 4 decoder
layers, with the feature channels of [16, 32, 64, 128] in the encoder layers. For the
MedNext, we followed the architecture proposed by [29], using the small model
with 3×3×3 convolutional kernel size. Both models were trained using the dice
loss as the objective function. The number of training data was set as 4, 8, 16,
and 80, respectively to evaluate the efficiency of different synthesis approaches
for few-shot learning. The dice similarity coefficient (DSC) and mean surface
distance (MSD) [30] were utilized to evaluate the segmentation performance

Reconstruction: For the image reconstruction experiment, we performed
three sub-tasks, including super-resolution, denoising, and deblurring. The syn-
thesized images were further degraded via downsampling, Gaussian blurring,
or adding Gaussian noise. For super-resolution, we performed 2× and 4× up-
sampling, with downsampled images obtained by bilinear interpolation [35]. For
deblurring, we employed Gaussian filters with σ ∈ {1, 2, 5}. For denoising, we
used noise levels σ ∈ {0.1, 0.2, 0.5} with µ = 0. We utilized two neural network
architectures: ResNet [31] and Residual Encoder-Decoder (RED) [32] for general



image reconstruction and supplemented Efficient Super-Resolution Transformer
(ESRT) [33] specifically for super-resolution. All the models were trained using
the L2 loss as the objective function. We utilized 8 data to train the reconstruc-
tion tasks and established a baseline model without integrated synthesis meth-
ods. The model trained on the full 80 data was treated as the upper bound. Peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) [34]
were utilized to evaluate the reconstruction performance. We also conducted a
significance test between ACIS and the other-best performing models using a
one-sided Wilcoxon signed-rank test, considering p < 0.05 as the threshold for
statistical significance.

3.2 Evaluation of the Improvement on Segmentation Task

Baseline StyleGAN MedGen3D V2UM2I ACIS- ACIS
DCS (%) NSD DCS (%) NSD DCS (%) NSD DCS (%) NSD DCS (%) NSD DCS (%) NSD

n=4 3DUnet 71.82 18.10 82.90 7.18 84.99 8.43 84.21 7.29 84.16 6.40 87.61* 5.73*
MedNext 72.72 19.61 85.90 6.39 88.06 4.26 88.07 4.81 87.91 4.42 91.10* 4.27*

n=8 3DUnet 87.09 5.07 91.16 5.13 93.42 2.31 92.64 2.82 92.36 2.72 94.05* 2.34
MedNext 88.39 5.68 90.96 4.86 93.62 2.18 92.46 2.63 92.36 2.63 94.83* 2.17*

n=16 3DUnet 90.50 3.38 91.98 3.41 93.33 2.05 92.40 3.18 92.85 2.05 94.05* 1.89
MedNext 92.52 3.08 93.03 3.75 93.78 2.15 93.18 2.39 93.98 2.15 94.34 1.95*

n=80 3DUnet 93.06 1.81 92.88 1.49 94.30 1.20 94.46 1.27 93.97 1.27 94.47 1.13
MedNext 94.40 1.58 93.89 1.28 95.42 1.20 94.91 1.14 95.03 1.12 95.24 1.06

Table 1. A comparative assessment of the efficacy of various data synthesis techniques
for pulmonary anatomical segmentation.“DCS"=dice score, “MSD"=mean surface dis-
tance. A higher value of DCS and a lower value of MSD means a better segmentation
result. The synthesis method yielding the best performance is denoted in bold font.
"*" means the statistical significance.

The anatomical segmentation performance on the TLobe dataset, as pre-
sented in Table 1, demonstrated the generalization capability of our proposed
ACIS synthesis method. The empirical findings revealed that the improvements
afforded by ACIS were broadly applicable: when training data was scarce, ACIS
conferred considerable performance boosts per both dice score and mean sur-
face distance metrics. Even with sufficient training data, ACIS continued to
enhance segmentation performance and model robustness. These results implied
that ACIS represented an efficient few-shot learning strategy that mitigates de-
pendence on training set size and a general means of improving neural network
performance and generalizability.

3.3 Evaluation of the Improvement on Reconstruction Task

Table 2 delineated the quantitative outcomes of the image reconstruction tasks
on the PENet dataset. Our analyses revealed that the proposed ACIS approach
surpassed other data synthesis techniques in most metrics, with performance



Baseline StyleGAN MedGen3D V2UM2I ACIS- ACIS Upper Bound
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Super
resolution

SR×2
ResNet 29.43 0.911 30.76 0.918 31.40 0.923 30.49 0.921 31.24 0.922 31.20 0.927* 32.44 0.932
RED 29.56 0.910 30.87 0.922 32.19 0.941 31.30 0.932 32.12 0.937 32.90* 0.947* 33.80 0.935
ESRT 30.39 0.929 32.51 0.940 33.45 0.951 33.38 0.942 34.01 0.942 34.49 0.950 34.53 0.957

SR×4
ResNet 26.80 0.904 27.91 0.913 28.90 0.915 28.66 0.914 28.50 0.915 28.76 0.922 28.68 0.923
RED 27.79 0.916 28.81 0.922 29.34 0.918 29.66 0.927 28.98 0.923 29.22 0.924 29.15 0.924
ESRT 28.02 0.917 29.11 0.919 29.05 0.922 30.13 0.916 29.28 0.926 29.36 0.926 29.53 0.927

Denoising

σ=0.1 ResNet 30.34 0.849 31.58 0.855 31.75 0.876 32.41 0.885 32.62 0.906 32.04 0.904 32.61 0.914
RED 30.98 0.894 32.03 0.905 32.97 0.910 33.06 0.906 33.26 0.911 33.84* 0.914 34.29 0.920

σ=0.2 ResNet 27.55 0.871 28.83 0.899 30.76 0.892 29.98 0.905 30.99 0.913 30.83 0.912 31.24 0.918
RED 28.88 0.897 30.24 0.906 31.66 0.910 31.52 0.918 30.32 0.919 30.34 0.925* 31.55 0.928

σ=0.5 ResNet 24.19 0.805 25.38 0.820 26.02 0.844 26.49 0.845 25.91 0.852 26.25 0.856 26.95 0.863
RED 27.15 0.837 28.33 0.844 28.39 0.849 29.39 0.846 29.35 0.845 29.22 0.853 29.90 0.860

Deblurring

σ=2 ResNet 30.09 0.889 31.31 0.904 32.74 0.938 32.69 0.944 34.35 0.951 34.22 0.960 34.52 0.956
RED 34.56 0.964 35.71 0.974 34.84 0.958 36.51 0.964 35.24 0.960 35.22 0.970* 35.52 0.973

σ=3 ResNet 29.44 0.876 30.98 0.890 31.34 0.906 31.69 0.911 31.23 0.916 31.87 0.927 32.59 0.930
RED 33.28 0.946 34.78 0.959 35.20 0.948 35.50 0.955 34.61 0.959 34.91 0.965* 35.95 0.968

σ=5 ResNet 27.02 0.790 28.10 0.799 28.25 0.825 29.04 0.863 28.80 0.861 28.77 0.863 28.93 0.857
RED 27.73 0.851 29.03 0.870 29.07 0.875 29.96 0.864 29.99 0.892 30.24* 0.898 29.89 0.897

Table 2. A comparative assessment of the efficacy of various image synthesis techniques
for image super-resolution, denoising, and deblurring. “PSNR"=signal-to-noise ratio,
“SSIM"=structural similarity index measure. A higher value of PSNR and SSIM means
a better result. The synthesis techniques yielding the optimal performance are denoted
in bold font. "*" means the statistical significance.

comparable to the upper bounds in some cases. This conclusion persisted across
diverse reconstruction tasks and degrees of image degradation. The experiments
evinced that the ACIS engendered substantive improvements in reconstruction
performance, yielding PSNR enhancements of approximately 2 to 4 dB and
SSIM increases of 0.01 to 0.03. Relative to the upper bound trained on 80 scans,
the performance with ACIS augmentation exhibited only a 1% decline, despite
reducing the training data by over 90%.

4 Conclusion

In this study, we propose a novel anatomic-constrained medical image synthe-
sis framework termed ACIS that introduces anatomically diverse training data
to downstream tasks, enhancing the fidelity and variability of synthesized im-
ages while preserving anatomical realism. We devise pseudo-masks derived from
real-world data as anatomy priors coupled with a multi-stage synthesis pipeline
to enable the generation of diverse yet realistic visual data. Additionally, we
employ registration uncertainty to refine outputs and promote anatomical con-
gruity between synthesized and real-world images. Experiments on high-level
segmentation and low-level image reconstruction tasks demonstrate that our
proposed synthesis approach efficaciously augments limited training data for
few-shot learning, attaining superior performance over state-of-the-art synthesis
techniques across diverse datasets. Remarkably, ACIS approaches or surpasses
models trained on full datasets even when utilizing only 10% or less of the total
training data. Overall, ACIS signifies promising advancements in medical im-



age synthesis, paving the way for enhanced diagnostic performance and clinical
applications under limited supervision.
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