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Abstract. Automatic radiology report generation is a challenging task
that seeks to produce comprehensive and semantically consistent detailed
descriptions from radiography (e.g., X-ray), alleviating the heavy work-
load of radiologists. Previous work explored the introduction of diagnos-
tic information through multi-label classification. However, such meth-
ods can only provide a binary positive or negative classification result,
leading to the omission of critical information regarding disease severity.
We propose a Graph-driven Momentum Distillation (GMoD) approach
to guide the model in actively perceiving the apparent disease severity
implicitly conveyed in each radiograph. The proposed GMoD introduces
two novel modules: Graph-based Topic Classifier (GTC) and Momentum
Topic-Signal Distiller (MTD). Specifically, GTC combines symptoms and
lung diseases to build topic maps and focuses on potential connections be-
tween them. MTD constrains the GTC to focus on the confidence of each
disease being negative or positive by constructing pseudo labels, and then
uses the multi-label classification results to assist the model in perceiving
joint features to generate a more accurate report. Extensive experiments
and analyses on IU-Xray and MIMIC-CXR benchmark datasets demon-
strate that our GMoD outperforms state-of-the-art method. Our code is
available at https://github.com/xzp9999/GMoD-mian.

Keywords: Report Generation · Attention · Knowledge Distillation.

1 Introduction

Automated generation of radiology reports can improve physician productiv-
ity and has received increasing research attention. Mainstream approaches use
encoder-decoder architectures [1,22,21,33,30,7,20]. Early research used convolu-
tional neural networks (CNN) to extract visual features [1,22,30]. Also, Long
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Short-Term Memory Networks (LSTM) [21,33,30] or recurrent neural networks
(RNN) [1,22] were also used to generate reports or extract features based on
regions [39]. With the advent of the Transformer [27], many studies have used
various attention mechanisms to improve the performance [7,20,39]. Recently,
some methods have started exploring the extraction of radiological knowledge to
assist in report generation [31,36,35,12,17,40,6], with [36] proposing a knowledge-
enhanced attention mechanism to improve generation quality. with some studies
employing multitask learning and utilizing radiograph classification information
to aid in report generation [25,23].

Despite some progress, challenges remain for methods aiming to extract radi-
ological knowledge to assist in report generation. First, features extracted by the
encoder from different modalities exist in different representation spaces, leading
to inconsistent representations of image and text features with the same seman-
tics. Recent work [6] distilling clinical information into decoders can somewhat
alleviate this problem. Secondly, directly using disease or symptom classification
results to assist in generation (e.g., emphysema-positive) lacks consideration for
the degree of negativity or positivity (e.g., lung field transparency increases,
probably emphysema). Lastly, the interconnections between diseases and symp-
toms, as well as between different diseases, are disregarded.

Motivated by the shortcomings mentioned above, we propose GMoD to en-
hance the utilization of radiographs and diagnostic knowledge for improved au-
tomated report generation. Our framework mainly consists of two core modules,
GTC and MTD. First, we construct a similarity graph between disease and
symptom features through pre-training. Then, with the help of the graph at-
tention mechanism, we guide the model to focus on the potential relationships
between symptoms and pathological features, thereby enhancing the model’s un-
derstanding of the images and improving the quality of report generation. MTD
is designed to assess the degree of disease negativity or positivity by creating
non-one-hot pseudo-labels to guide the model in learning these nuances, instead
of rigidly categorizing them into two categories. Our contributions can be sum-
marized as follows: 1) To make full use of medical information we propose the
GMoD framework with two novel modules: Graph-based Topic Classifier (GTC)
and Momentum Topic-Signal Distiller (MTD); 2) GTC guides the model to
emphasize potential relationships between symptoms and pathological features
during classification tasks for report generation. While MTD constructs pseudo-
labels on this basis and adds distillation loss constraints to the classifier to focus
on the confidence of disease negativity or positivity; 3) Extensive experiments
and research conducted on the MIMIC-CXR and IU-Xray datasets demonstrate
that our GMoD has achieved state-of-the-art performance.

2 Methodology

As shown in Fig. 1, our proposed GMoD framework contains two novel mod-
ules: GTC and MTD. Notably, MTD shares GTC’s structure. MTD’s weight
initialization is copied from GTC without gradient, updated by momentum in
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Fig. 1. The overall architecture of GMoD, where the MTD module is identical to that
of the GTC, and the initialization parameters are passed through from the GTC.

subsequent calculations. The pseudo-label for GTC loss is constructed using the
output of MTD and ground truth.

2.1 Graph-based Topic Classifier

We adopted a graph attention mechanism to capture the intrinsic correlation
between diseases and symptoms. Specifically, we extracted 100 symptom topic
headings and 14 lung diseases, jointly constructed a topic graph, and then vec-
torized it using topic embeddings. We chose a two-stage training approach, as
described below.

Creating a pre-constructed similarity graph is the objective of the first
stage. The vectors V = {v1, v2, . . . , vn} from the topic embedding were first
randomly initialized, where V ∈ Rn×d. Subsequently, we used a classifier without
graph attention to update the topic embedding, aiming to learn an embedding
effectively representing disease features. The trained embedding was used to
construct a similarity graph and a similarity matrix was evaluated using the
formulation below:

Sim(i,j) =
Vi × Vj

||V i|| × ||V j ||
, i, j ∈ {1, 2, ..., n} (1)



4 Xiang et al.

where n denotes the number of features in the topic embedding. Then, the top
K most similar features (from the similar matrix; see Eqn. 1) were selected to
form a graph.
A Graph Classifier provides disease and symptom diagnostic information to
the decoder for report generation tasks as the goal of the second stage. Vectors
VG were obtained from pre-trained topic embedding. The process of learning the
relationship between diseases and symptoms through the graph attention mecha-
nism (GAT) [29] can be written as Fg = GAT (VG). Cross-Attention Mechanism
(CAM) can be defined below:

CAM(X,Y ) = αYWV , α = softmax(XWQ(YWK)T ). (2)

where WQ, WK and WV are learnable parameters. The divisor
√
d is omitted in

the above formula for simplicity. After receiving the graph features Fg ∈ Rn×d,
we employed the cross-attention mechanism to capture the radiographic re-
gions of interest for each node in the topic graph F ′

ν = CAM(Fν , Fg), where
Fv ∈ RN×d represents the radiographic features extracted by the image encoder
and F ′

ν ∈ Rn×d is the fused feature of symptoms graph and radiographs. The
process of utilizing cross-attention to focus on the features Fs in the State Em-
bedding is represented as: F ′

s = CAM(F ′
v, Fs) = αcFsW

V . Here, F ′
s represents

the diagnostic features that obtained the classification results, while αc serves as
the attention score, functioning as the probability distribution used for calculat-
ing the MTD loss. Then, we use a method similar to Shang et al.[25] to further
obtain state-aware disease features.

ν′ =

{
1, αc > τ
0, αc < τ

, Fc =

{
F ′
s + yFs, if training phase

F ′
s + y′Fs, otherwise (3)

where y ∈ Rn×2 is one-hot ground-truth label, and y′ ∈ Rn×2 is the prediction
result, and τ is a hyperparameter serving as a threshold. In Eqn. 3, S ∈ R2×d

represents state embedding, which is randomly initialized and updated through
training and Fc ∈ Rn×d represents the state-aware disease features utilized to
assist the decoder during the (radiology) report generation.

2.2 Momentum Topic-Signal Distiller

We observed that one-hot labels solely indicate the presence or absence of a dis-
ease or condition, overlooking the crucial information regarding the degree of neg-
ativity or positivity associated with the disease. In general, the more severe the
disease depicted in the radiograph, the higher the confidence observed through
the MTD module. Therefore, we employed momentum to generate pseudo-labels
and leveraged self-distillation to help the model better understand the severity
of each disease and symptom. Throughout the training process, MTD had no
gradient. MTD parameters were updated as follows:

PMTD ← mPMTD + (1−m)PGTC (4)
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where m ∈ [0, 1) is a momentum coefficient, PGTC and PMTD are parameters
of GTC and MTD modules, respectively. After updating PMTD, we sent Fg and
Fv into MTD for forward propagation again and constructed the pseudo labels
using obtained α′

c and the classification ground truth label LGT , as follows:

α′
c, F

′
c = MTD(Fv, Fg) (5)

Where α′
c and F ′

c are obtained in a manner equivalent to αc and Fc in GTC.
Then, pseudo labels were constructed using the obtained α′

c and the categorical
true label LGT , and the distiller loss was calculated:

PT
θ = µLGT + (1− µ)softmax(α′

c) (6)

where µ ∈ [0, 1) is a distillation coefficient, PT
θ represents the targeted prob-

ability distribution obtained by weighting the true labels and the momentum-
predicted labels. We used Kullback–Leibler divergence to minimize the differ-
ence between PT

θ and the probability distribution αc, expressed as: LDC =
KL(PT

θ ||αc). As the classifier optimization objective. The distillation-base clas-
sifier loss is denoted as LDC in Eqn. 8. The distillation coefficient µ followed a
classical decay strategy:

µ = µ− (1− cos(π · ecur
etol

) · (µ− µ′)) (7)

where µ′ is the minimum value to which the distillation coefficient should de-
cay, ecur represents the current epoch value, and etol denotes the total training
epochs. The overall optimization objective consists of the report generation loss
LRG and distillation-based classifier loss LDC . λDC and λRG are loss weighting
hyper-parameters.

L = λDC · LDC + λRG · LRG (8)

3 Experiments

Dataset And Evaluation Metrics. Through extensive experiments on the
widely used datasets MIMIC and IU-Xray, we thoroughly evaluate the pro-
posed GMoD framework. MIMIC-CXR[8] provided by Beth Israel Deaconess
Medical Center, is a recently released large-scale data set. The dataset includes
377,110 radiographs and 227,835 diagnostic reports. For a fair comparison, we
used the same data splits and Vocabulary Building as the benchmark method[3],
resulting in 368,960 in the training set, 2,991 in the validation set, and 5,159 in
the test set. IU-Xray[5] supplied by Indiana University contains 7,470 X-ray im-
ages and 3,955 corresponding reports. Following previous work [3], we excluded a
portion of data without "Findings" and split 70%-10%-20% training-validation-
testing sets, following the most widely used practices.

For both datasets, we used categorical labels from [25] for the classification
task, with the occurrence of the topic words being noted as positive and vice
versa as negative. We assessed the quality of the generated reports using various
evaluation metrics. These include BLEU [5], METEOR [2], ROUGE-L [15], and
CIDEr [28]. Higher scores are indicative of superior model performance.
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Table 1. Performance comparisons of the proposed GMoD with existing methods on
NLG metrics were conducted using the test sets of the MIMIC-CXR and IU-Xray
datasets. The best values are highlighted in bold.

DatasetsMethods Year BLEU-1BLEU-2BLEU-3BLEU-4METEORROUGE-LCIDEr

IU-Xray

R2Gen [3] 2020 0.470 0.304 0.219 0.165 0.187 0.371 -
PPKED [17] 2021 0.483 0.315 0.224 0.168 0.190 0.376 0.351
Contrastive [18] 2021 0.492 0.314 0.222 0.169 0.193 0.381 -
AlignTransformer [37] 2021 0.484 0.313 0.225 0.173 0.204 0.379 -
CMCL [16] 2022 0.473 0.305 0.217 0.162 0.186 0.378 -
URA [14] 2023 0.530 0.365 0.263 0.200 0.218 0.405 0.510
KiUT [6] 2023 0.525 0.360 0.251 0.185 0.242 0.409 -

GMoD Ours 0.530 0.363 0.267 0.203 0.217 0.418 0.437

MIMIC
-CXR

TopDown [1] 2018 0.317 0.195 0.130 0.092 0.128 0.267 -
R2Gen [3] 2020 0.353 0.218 0.145 0.103 0.142 0.270 -
PPKED [17] 2021 0.360 0.224 0.149 0.106 0.149 0.284 0.237
Contrastive [18] 2021 0.350 0.219 0.152 0.109 0.151 0.283 -
AlignTransformer [37] 2021 0.378 0.235 0.156 0.112 0.158 0.283 -
CMCL [16] 2022 0.344 0.217 0.140 0.097 0.133 0.281 -
URA [14] 2023 0.363 0.229 0.158 0.107 0.157 0.286 0.246
KiUT [6] 2023 0.393 0.243 0.159 0.113 0.160 0.285 -

GMoD Ours 0.398 0.251 0.172 0.124 0.166 0.286 0.377

Implementation Details. Our baseline model utilized the pre-trained DenseNet-
121 to extract image features. A 6-layer image-text encoder and a 12-layer re-
port decoder for report generation complemented it. The image encoder used a
self-attention mechanism, while the text encoder used a masked self-attention
mechanism. We used an Adam[19] optimizer with a weight decay of 5e-5, and
set the learning rate to 1e-4. The top k highest similarities were chosen as in-
terconnected nodes to obtain the pre-constructed similarity graph, with k set
to 5. Distillation coefficient µ and µ′ were set to 0.995 and 0.95 for the MIMIC
data, respectively. The same parameters for the IU-Xray were 0.995 and 0.96,
respectively. The momentum coefficient m was set to 0.995. Larger generation
loss weights yield better results; therefore, λDC and λRG were set to 2 and 1,
respectively. To be consistent with existing methods, we simultaneously used
frontal and lateral radiology images as input on the IU-Xray dataset and each
image separately as input on MIMIC.

4 Analysis

Performance Comparison. To demonstrate our architecture’s effectiveness,
we compared several selected state-of-the-art methods using the MIMIC and IU-
Xray datasets. The selected comparison methods included a baseline method[1,3],
a method with improved attention mechanisms [18,37], and a method using graph
structures [6]. As shown in Table 1, our GMoD architecture achieved competitive
results in both datasets. Furthermore, our results indicated that graph-driven
knowledge distillation could more effectively integrate diagnostic information for
improved (radiology) report generation.
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Table 2. Ablation studies on the proposed Graph-based Topic Classifier (GTC) and
Momentum Topic-Signal Distiller (MTD). In GTC, SC stands for a standalone classifier
without a topic graph, while GA represents building a topic graph on this basis and
adding graph attention.

dataset GTC MTD Metric
SC GA Bleu1 Bleu2 Bleu3 Bleu4 Meteor Rouge_L CIDEr

MIMIC-CXR

0.356 0.222 0.151 0.108 0.140 0.280 0.253
✓ 0.378 0.228 0.148 0.099 0.149 0.270 0.224
✓ ✓ 0.398 0.239 0.155 0.104 0.156 0.269 0.304
✓ ✓ 0.392 0.246 0.169 0.122 0.163 0.287 0.359
✓ ✓ ✓ 0.398 0.251 0.172 0.124 0.166 0.286 0.377
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Fig. 2. (a) The effect of different values of K when choosing the top K most similar
Topic words as nodes for interconnection. (b) Experimental results corresponding to
the minimum value µ′ of different momentum coefficient attenuation

Ablation Studies. To thoroughly explore the contributions of our proposed
GTC and MTD modules, our major results are shown in Fig. 2. In the ablation
study, GTC and MTD were added separately to the baseline model.

For GTC, we started with the baseline model and first added a standalone
classifier without a topic graph (SC). Then, we introduced a pre-constructed
topic graph and added graph attention (GA) based on SC to train the classifier.
Results in Table 2 clearly indicate that adding both SC and GA improved the
performance, underscoring the effectiveness of guiding the model to learn and
leverage this implicit relationship for enhancing report generation.

When constructing a similarity graph and selecting the top K most similar
topic words as nodes, a larger K value requires the model to focus on more nodes
with low correlation. As a result, introducing a large K introduces noise and may
cause the model to lose attention to important nodes. Fig. 2 (a) illustrates the
impact of different K values on report generation performance.

For MTD, From Table 2, for the MIMIC dataset, we can observe that MTD
significantly improves the quality of generated reports. The report is generated
by refining the diagnostic information through MTD, which aligns more with
the radiologist’s decision-making process.

Through observations, we found that a larger distillation coefficient is more
beneficial. Therefore, we set the initial value of µ to 0.995, and the impact of
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Fig. 3. A case study of our model utilizing a topic graph to generate radiology reports.
The related topic graph shows the five nodes related to this example, where the grey
circle refers to the global node. Different colors in the report indicate the radiology
terms associated with the different nodes.

the minimum distillation coefficient µ′ on the experimental results is shown in
Fig. 2 (b).

Case Studies. Case studies illustrated in Fig. 3. It can be intuitively seen
that our method precisely and correctly generates reports consistent with the
ground truth. As Fig. 3 shows, our method correctly generates five radiologi-
cal terms consistent with the ground truth, we attribute this improvement to
the graph construction and Graph-based Topic Classifier, which accurately es-
tablishes connections between radiographs and radiological terms. At the same
time, it accurately assesses their normal and abnormal conditions. Notably, our
method attends to and reports some subtle observations, such as "cardiac sil-
houette is mildly enlarged", which can be attributed to the knowledge extracted
by the distiller.

5 Conclusions

This paper proposes GMoD, a novel architecture dedicated to enhancing infor-
mation utilization. For the first time, we attempted to align high-level visual
information with disease severity via explicit constraints when generating radi-
ology reports. Our model utilized the potential relationship between topic words
and radiographs for encoding and established the mapping logic between dis-
ease severity and radiographs through the momentum distiller constraint model,
thereby perceiving disease severity proactively. Extensive experiments on MIMIC
and IU-Xray show that our method correctly established the connection between
radiographs, diagnostic information, and reports, proving the effectiveness of
auxiliary report generation focusing on disease severity.
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