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Abstract. The dopamine transporter (DAT) imaging such as 11C-CFT
PET has shown significant superiority in diagnosing Parkinson’s Disease
(PD). However, most hospitals have no access to DAT imaging but in-
stead turn to the commonly used 18F-FDG PET, which may not show
major abnormalities of PD at visual analysis and thus hinder the perfor-
mance of computer-aided diagnosis (CAD). To tackle this challenge, we
propose a Metabolism-aware Anomaly Detection (MetaAD) framework
to highlight abnormal metabolism cues of PD in 18F-FDG PET scans.
MetaAD converts the input FDG image into a synthetic CFT image
with healthy patterns, and then reconstructs the FDG image by a re-
versed modality mapping. The visual differences between the input and
reconstructed images serve as indicators of PD metabolic anomalies. A
dual-path training scheme is adopted to prompt the generators to learn
an explicit normal data distribution via cyclic modality translation while
enhancing their abilities to memorize healthy metabolic characteristics.
The experiments reveal that MetaAD not only achieves superior perfor-
mance in visual interpretability and anomaly detection for PD diagnosis,
but also shows effectiveness in assisting supervised CAD methods. Our
code is available at https://github.com/MedAIerHHL/MetaAD.

Keywords: Parkinson’s disease · Brain PET · Unsupervised Anomaly
Detection · Cross-modality Synthesis.

1 Introduction

Parkinson’s Disease (PD) is one of the most common neurodegenerative disorders
that primarily affects the motor system of the human body [14,20]. PD typically
has a stealthy onset and is often clinically diagnosed in the mid to late stages,
usually missing the optimal treatment window [16]. Therefore, an early and pre-
cise diagnosis of PD is crucial for timely therapeutic intervention [17]. Positron
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Fig. 1. (a) 11C-CFT PET can reveal the differences between Parkinson’s Disease (PD)
and normal control (NC) while 18F-FDG PET shows minimal visual differences. (b)
The proposed MetaAD can highlight metabolic anomalies of PDs in FDG images. Red
and blue regions denote abnormal areas of higher and lower metabolism, respectively.

Emission Tomography (PET) has emerged as a superior imaging modality in
diagnosing neurological brain disorders [5]. The dopamine transporter (DAT)
imaging such as 11C-CFT PET has been utilized as a standard practice for dis-
cerning abnormal metabolisms for PD patients [26]. As shown in Fig. ??(a),
a 11C-CFT PET scan can reveal functional alterations of dopaminergic neu-
rons in the caudate and putamen regions [10]. Although 11C-CFT PET has
demonstrated significant superiority in diagnosing PD, most hospitals have to
use the more generic 18F-fluorodeoxyglucose (18F-FDG) PET for PD diagnosis.
Distinguishing PD patients from normal controls (NCs) in FDG images poses
a challenge even for senior clinicians due to minimal visual differences [19]. It
also inherently curtails the performance of deep learning-based computer-aided
diagnosis (CAD) systems in diagnosing PD in FDG images [25].

An instinctive solution to the problem above would be to visually highlight
significant areas of metabolic anomalies in FDG images, which can enhance the
capability and interpretability of CADs without architecture modifications. Un-
supervised anomaly detection (UAD) [4] emerges as a priority option because it
can construct residual maps for abnormal samples to visually demonstrate their
differences from normal samples. A typical UAD method first learns the recon-
struction of normal images and then detects potential anomalies by evaluating
the pixel difference between the input and reconstructed images. The underly-
ing assumption is that a model solely trained on normal data will consistently
reconstruct normal patterns regardless of the anomalies from the inputs. Au-
toencoders (AEs) [6, 23] or Generative Adversarial Networks (GANs) [1, 22] are
usually employed to learn a compact latent space that represents the normal
data distribution exclusively. However, optimizing the latent space is notori-
ously challenging, primarily due to the inability to intuitively observe what it
has encoded. Some UAD methods utilize cyclic modality translation for image
reconstruction [3, 15], which offers an intermediate image to visually represent
normal characteristics in another modality. Nevertheless, these methods neces-
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Fig. 2. The proposed MetaAD adopts a dual-path training scheme including (a) One-
class Cyclic Modality Translation and (b) Abnormal Metabolism Suppression.

sitate paired data in training, and often excel in cross-modality mapping rather
than accurately modeling tissue-specific normal features.

To address the issues above, we propose a Metabolism-aware Anomaly
Detection (MetaAD) framework to visually indicate abnormal metabolism cues
of PD in 18F-FDG PET scans. MetaAD consists of two generators as shown in
Fig. 1(b). The CFT Generator acts as the encoder, embedding the input FDG
image into the synthetic CFT image space that only represents healthy metabolic
characteristics. The FDG Generator plays the role of the decoder, reconstructing
the most similar normal FDG image from the distribution of synthetic CFT im-
ages. The intensity differences between the input and reconstructed FDG images
result in a residual map, which highlights the areas of metabolic anomalies.

MetaAD adopts a dual-path training scheme as illustrated in Fig. 2. The
main path One-class Cyclic Modality Translation prompts the generators
to construct an explicit normal data distribution by cross-modality mapping. The
parallel auxiliary path Abnormal Metabolism Suppression leverages the ab-
normal metabolism simulation mechanism to enhance the generators’ ability of
healthy metabolism modeling. The experiments demonstrate that MetaAD out-
performs other UAD methods in detecting metabolic anomalies of PD, making
it an effective and explainable tool for decision-making. Moreover, MetaAD can
enhance the performance and interpretability of supervised CAD algorithms by
simply incorporating the residual maps as additional inputs.
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2 Method

As demonstrated in Fig. 2, MetaAD adopts a dual-path training scheme to-
ward metabolism-aware learning. One-class Cyclic Modality Translation is the
primary path that learns an explicit normal data distribution of CFT images
and reconstructs normal FDG images via cross-modality translation. Abnormal
Metabolism Suppression serves as an auxiliary path that reinforces MetaAD’s
ability to memorize healthy metabolic characteristics.

2.1 One-class Cyclic Modality Translation

Given the difficulty of acquiring paired FDG and CFT images for NC subjects
in real clinical scenarios, we adopt the idea of CycleGAN [27] to train MetaAD
on the unpaired dataset. As shown in Fig. 2(a), the CFT Generator GCFT in-
puts a real FDG image IFDG,real to predict a synthetic CFT image ICFT,syn

characterized by healthy metabolism, while the FDG Generator GFDG outputs
the reconstructed FDG image IFDG,recon via a reversed modality mapping from
ICFT,syn. All the PET images are 3D volumes with the same shape H×W ×D.
Two generators GCFT and GFDG adopt the same 3D U-Net architectures [21].
A voxel-wise ℓ1 loss is implemented as the cycle-consistency loss Lcycle to reduce
the metabolism difference between IFDG,real and IFDG,recon:

Lcycle = EIFDG,real,IFDG,recon

[
∥IFDG,real − IFDG,recon∥ℓ1

]
. (1)

To ensure that the intermediate CFT images capture healthy metabolic fea-
tures, a 3D fully-convolutional PatchGAN discriminator DCFT is employed to
distinguish the real CFT images from the synthetic ones, thus forcing the syn-
thetic metabolism of CFT images to match the real data distribution in an
adversarial setting. The hinge version of the standard adversarial loss Ladv is
used as the objective to optimize GCFT and DCFT .

In addition to training the forward flow of cyclic modality translation above,
the same training settings are also implemented in the reversed cyclic modality
translation flow, i.e., CFT → FDG → CFT, thus enhancing the generators’
ability of cross-modality translation as well as healthy metabolism modeling.

2.2 Abnormal Metabolism Suppression

MetaAD is theoretically expected to reconstruct normal FDG images only, but
it sometimes fails to reconstruct healthy metabolic patterns for PD subjects via
cyclic modality translation. The underlying reason lies in the training objec-
tives of One-class Cyclic Modality Translation where the optimizations of cross-
modality translation and healthy metabolism modeling are entangled. Thus, Ab-
normal Metabolism Suppression, an auxiliary but indispensable training path,
is designed to facilitate metabolism-aware learning in training MetaAD.

The core idea of Abnormal Metabolism Suppression is to increase the diffi-
culty of cyclic modality translation by simulating metabolic anomalies for the
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input images, thereby forcing the models to memorize normal metabolic pat-
terns. For abnormal metabolism simulation, we employ Poisson noises based on
the clinical prior that Poisson noise is the dominant source of noises in PET
imaging [24]. Specifically, we increase the unpredictability of Poisson noises by
implementing the following three steps, thus preventing the models from easily
grasping the anomalous patterns. Firstly, we randomly select a volumetric patch
within the input image, preparing to fill it with the generated noise. Secondly,
inspired by the observation that training with lower resolution noise leads to
better anomaly detection than naive pixel-wise noise [12], we generate a coarse
noise map by downsampling the selected patch and filling it with Poisson noise.
Thirdly, we perturb the coarse noise map through cyclic shifting of matrix ele-
ments, upsample it to the original patch size, and add it to the selected location.

The abnormal metabolism simulation mechanism above cannot be directly
applied to One-class Cyclic Modality Translation, thereby preventing the models
from only recognizing abnormal patterns rather than normal ones. Instead, we
build a parallel training flow for Abnormal Metabolism Suppression as illustrated
in Fig. 2(b). The simulated abnormal metabolism is added to the real FDG image
IFDG,real to formulate the input IFDG,noised. The CFT Generator GCFT learns
to restore a denoised CFT image ICFT,denoised with complete healthy metabolism
from IFDG,noised. A voxel-wise ℓ1 loss is employed as the consistency loss Lcon to
encourage the metabolism coherence between ICFT,denoised and ICFT,syn from
One-class Cyclic Modality Translation:

Lcon = EICFT,syn,ICFT,denoised

[
∥ICFT,syn − ICFT,denoised∥ℓ1

]
. (2)

The FDG Generator then converts ICFT,denoised to the denoised FDG image
IFDG,denoised. Directly imposing a consistency constraint between IFDG,denoised

and IFDG,recon from One-class Cyclic Modality Translation could lead to training
instability. Considering that IFDG,recon is optimized toward IFDG,real, we apply
a voxel-wise ℓ1 loss as the denoising loss Ldenoised between IFDG,denoised and
IFDG,real as the approximation of its consistency constraint with IFDG,recon.

Similar to One-class Cyclic Modality Translation, the training settings above
are also implemented to the reversed cyclic modality translation flow. The total
objective Ltotal for MetaAD can be expressed by combining all losses above:

Ltotal = λcycleLcycle + λadvLadv + λconLcon + λdenoisedLdenoised, (3)

where we empirically set λcycle to 10, λadv and λcon to 1, and λdenoised to 5.

2.3 Inference and Anomaly Scores

As described in Fig. 1(b), MetaAD produces a residual map where positive values
(denoted in red) indicate abnormal metabolism increases while negative values
(denoted in blue) represent decreases. While the visual differences are intuitively
presented in the residual maps, it is non-trivial to define quantitative anomaly
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scores for detecting PD metabolic anomalies. The maximum of the residual map,
widely used in UAD methods, may not work well since the metabolic changes
vary across different brain regions [11]. Therefore, we investigate the impact of
the following four anomaly scores on PD diagnosis.

• Highest Metabolic Anomaly (HMA). It measures the maximum of the
residual map, which indicates the peak of abnormal metabolism increase.

• Lowest Metabolic Anomaly (LMA). It measures the minimum of the
residual map, which indicates the valley of abnormal metabolism decrease.

• Abnormal Metabolism Range (AMR). It measures the difference be-
tween the maximum and minimum values in the residual map, which indi-
cates the range of abnormal metabolic changes.

• Averaged Metablism Change (AMC). It measures the mean value of
the cycle-consistency loss Lcycle between the input and reconstructed images,
which reflects the averaged change of metabolic anomalies.

3 Experimental Results

3.1 Dataset and Experimental Setup

Dataset We involve 274 PD patients and 330 NC subjects from Huashan Hos-
pita. Each PD patient underwent a 18F-FDG PET scan and a 11C-CFT PET
scan. For NC subjects, 154 subjects underwent a 18F-FDG PET scan, 154 sub-
jects underwent a 11C-CFT PET scan, and 22 subjects underwent two PET
imaging scans. Each PET scan is registered to standard MNI 152 space and
cropped to 96× 80× 72 in 2× 2× 2 mm resolution.

Implementation Details We conduct 5-fold cross-validations on all the ex-
periments using an NVIDIA A100 GPU with PyTorch [18]. To be specific, we
first combine 274 PD FDG images and 154 NC FDG images that have no paired
CFT scans. Then we randomly split them into five groups, each of which served
as the testing set in turn with the remaining four groups as the training set.
When training MetaAD, only the NC FDG images in the training set are used
together with all 154 unpaired NC CFT images. The remaining 22 paired PET
images of NC subjects are particularly used to evaluate the qualitative perfor-
mance of MetaAD. We use the learning rate of 2 × 10−4, batch size of 4, and
Adam optimizer [13] to train MetaAD for 20k iterations.

3.2 Comparison with Other UAD Methods

We first compare MetaAD with other UAD architectures in visually detecting PD
metabolic anomalies in FDG images. As shown in Fig. 3, AE and U-Net struggle
to identify PD metabolic anomalies even though they can reconstruct NC FDG
images well. Both CycleGAN and MetaAD succeed in detecting high-metabolism
areas, but CycleGAN falls short in delineating low-metabolism areas as precisely
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Fig. 3. Qualitative comparison between MetaAD and other methods. Red and blue in
residual maps denote abnormal areas of higher and lower metabolism, respectively.

Table 1. Quantitative comparison of sensitivity based on different anomaly scores.

Method HMA LMA AMR AMC
AE [2] 60.82±7.17 86.89±5.04 60.79±7.04 2.17±2.15

U-Net [21] 34.97±7.19 78.20±6.22 50.05±7.41 21.54±6.11

CycleGAN [27] 62.95±7.23 71.69±6.61 76.11±6.12 50.07±7.37

MetaAD (Ours) 69.52±7.08 91.44±4.13 69.45±6.61 76.09±6.20

as MetaAD. Moreover, MetaAD outperforms CycleGAN in accurately identify-
ing abnormal metabolism for real PD CFT images, indicating its superiority in
modeling health metabolic patterns for both FDG and CFT modalities.

We also compare their quantitative performance based on four predefined
anomaly scores. The sensitivity results are shown in Table 1 while other eval-
uation metrics are presented in Supplementary Materials. It is observed that
MetaAD exhibits the best performance across almost all anomaly scores. No-
tably, MetaAD achieves significantly higher sensitivity than CycleGAN in terms
of LMA, an outcome consistent with their qualitative comparison above.

3.3 Ablation Study

We conduct an ablation study to verify the effects of the proposed dual-path
training scheme. Starting with One-class Cyclic Modality Translation only, we
integrate each key component step-by-step and report the performance based on
LMA in Table 2. First, directly adding simulated metabolic anomalies to One-
class Cyclic Modality Translation leads to a decline in performance. In contrast,
the performance can be greatly improved if a parallel training path is imple-
mented to tackle the simulated abnormal metabolism. Second, the consistency
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Table 2. Ablation study of the key components: (a) Abnormal metabolism simulation
(AMS), (b) parallel training path. (c) consistency loss Lcon, (d) Poisson noise.

Configuration LMA
AMS Parallel Lcon Noise Accuracy Sensitivity Specificity AUC

× × × × 73.66±5.58 71.69±6.61 77.39±8.97 79.65±5.75

✓ × × Poisson 70.70±5.64 71.72±6.69 68.23±9.85 75.34±6.21

✓ ✓ × Poisson 77.87±5.03 82.65±5.65 68.66±10.02 81.25±5.73

✓ ✓ ✓ Gaussian 76.66±5.03 73.77±6.26 81.46±8.33 80.31±6.02

✓ ✓ ✓ Poisson 83.82±4.48 91.44±4.13 67.92±10.09 83.97±5.54

loss between two intermediate synthetic CFT images can further enhance the
performance as it facilitates the information flow between training paths. In ad-
dition, applying Gaussian noise to simulate abnormal metabolism for training
MetaAD is suboptimal, which suggests that the utilization of Poisson noise aligns
more accurately with real-world scenarios.

Table 3. MetaAD can effectively improve the classification performance of various
supervised classification models in diagnosing PD in 18F-FDG PET images.

Classifier MetaAD Accuracy Sensitivity Specificity F1-Score AUC
× 79.37±3.31 80.64±11.22 77.39±17.61 83.34±3.48 90.44±6.41ResNet [7]
✓ 86.52±3.73 91.58±5.31 77.42±16.20 89.75±2.42 94.20±2.43

× 81.34±6.24 79.44±17.58 84.59±17.94 83.79±7.53 94.13±2.61DenseNet [9]
✓ 87.08±4.01 88.69±3.74 84.14±8.47 89.85±2.95 94.54±1.80

× 81.04±4.28 84.13±6.30 75.64±9.12 85.12±3.54 89.95±2.92SEResNet [8]
✓ 89.32±1.45 92.21±1.14 84.08±2.63 91.78±1.19 93.89±1.28

3.4 Effectiveness in Assisting Supervised Learning

To validate the effectiveness of MetaAD in assisting supervised learning algo-
rithms for PD diagnosis in FDG images, we conduct 5-fold cross-validations on
the PD/NC classification performance of three different classifiers (i.e., ResNet [7],
DenseNet [9], and SEResNet [8]) using the produced residual maps. Specifically,
each FDG image is concatenated with its residual map to establish the input. As
shown in Table 3, all the classifiers achieve significant improvements using resid-
ual maps as additional inputs. This illustrates that MetaAD can effectively aid
the supervised CAD systems in PD diagnosis and provide visual interpretations
by directly highlighting abnormal metabolism regions in FDG images.

4 Conclusion and Discussion

In this paper, we propose MetaAD, a novel metabolism-aware anomaly detection
framework, to visually highlight abnormal metabolism cues of PD in 18F-FDG



MetaAD: Metabolism-Aware Anomaly Detection 9

PET scans. We design a dual-path training path where One-class Cyclic Modal-
ity Translation enables MetaAD to explicitly represent normal data distribu-
tion through cross-modality conversion, while Abnormal Metabolism Suppres-
sion prompts MetaAD to memorize normal metabolic patterns via the abnormal
metabolism simulation mechanism. Comprehensive experiments demonstrate the
visual interpretability and anomaly detection superiority of MetaAD, as well as
its effectiveness in assisting supervised CAD methods in PD diagnosis. Still,
MetaAD falls short in differentiating PD from other atypical Parkinsonian syn-
dromes, which would be targeted in the future.
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