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Abstract. In dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) of the breast, tumor segmentation is pivotal in screening and
prognostic evaluation. However, automated segmentation is typically lim-
ited by a large amount of fully annotated data, and the multi-connected
regions and complicated contours of tumors also pose a significant chal-
lenge. Existing few-shot segmentation methods tend to overfit the tar-
gets of base categories, resulting in inaccurate segmentation boundaries.
In this work, we propose a hemodynamic-driven multi-prototypes net-
work (HDMPNet) for one-shot segmentation that generates high-quality
segmentation maps even for tumors of variable size, appearance, and
shape. Specifically, a parameter-free module, called adaptive superpixel
clustering (ASC), is designed to extract multi-prototypes by aggregat-
ing similar feature vectors for the multi-connected regions. Moreover, we
develop a cross-fusion decoder (CFD) for optimizing boundary segmen-
tation, which involves reweighting and aggregating support and query
features. Besides, a bidirectional Gate Recurrent Unit is employed to
acquire pharmacokinetic knowledge, subsequently driving the ASC and
CFD modules. Experiments on two public breast cancer datasets show
that our method yields higher segmentation performance than the ex-
isting state-of-the-art methods. The source code will be available on
https://github.com/Medical-AI-Lab-of-JNU/HDMP.

Keywords: One-Shot Segmentation · Breast Cancer segmentation ·
DCE-MRI · Superpixel Segmentation

1 Introduction
Semantic segmentation is pivotal in Computer-Aided Diagnosis (CAD) and var-
ious clinical applications such as diagnosis and surgical navigation. Typically,
developing robust segmentation models relies on extensive image datasets anno-
tated at the pixel level, posing a significant challenge for specific medical appli-
cations. Additionally, traditional semantic segmentation models may necessitate
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partial retraining when faced with new clinical tasks. Few-Shot Segmentation
(FSS) offers a novel approach to tackle these challenges. In recent years, few-shot
segmentation (FSS) [10,15] has demonstrated promising performance in natural
images but remains nascent in medical images. Therefore, our work primarily
focuses on one-shot segmentation tasks with breast cancer data.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is ex-
tensively applied for discerning molecular subtypes of breast cancer [4,12], a piv-
otal consideration in clinical tasks such as surgical interventions. Breast cancer
exhibits heterogeneity both morphologically and at the molecular level, requir-
ing tailored treatment strategies for patients with distinct molecular subtypes.
Recently, some methods [17, 23] have achieved particular success in breast can-
cer segmentation, but they fall short in discriminating between the subtypes of
breast cancer. Therefore, accurately distinguishing molecular subtypes is also
crucial for clinical tasks related to breast cancer.

Due to the high heterogeneity of breast tumors, resulting in variability in size,
appearance, and shape, tumors exhibit features of multi-connected regions and
complicated contours. We refer to the segmentation problem involving multi-
connected regions and complicated contours as discrete region segmentation.
Previous studies [3, 6] of few-shot medical image segmentation focus primarily
on contiguous regions, achieving particular effectiveness in handling continuous
regions. However, tackling the segmentation of discrete tumor regions remains
an exceptionally formidable task. In previous few-shot prototype learning net-
works [20, 22], researchers commonly use mask average pooling to generate a
single prototype for the foreground. Considering the multi-regional tumor mod-
ules in breast cancer, we have an insightful idea to cluster different regions into
distinct prototypes, thereby providing a more detailed representation of object
features. Additionally, in previous few-shot medical image segmentation stud-
ies [11, 16], inaccurate segmentation boundaries have posed a significant chal-
lenge as they solely depend on query features during decoding, disregarding the
utilization of support features. We contend that harnessing support features can
markedly improve segmentation results.

We propose a novel one-shot breast cancer segmentation approach in response
to the abovementioned challenges. Leveraging a lightweight encoder-decoder ar-
chitecture, we initially utilize a bidirectional Gate Recurrent Unit (GRU) [2]
to acquire pharmacokinetic knowledge. Subsequently, we cluster discrete tumor
regions and guide the pixel-wise allocation of query features. Finally, we intro-
duce a distinctive decoder featuring the coexistence feature extractor as its core,
aiming to capture the coexistence characteristics between support and query,
thereby enhancing the accuracy of boundary segmentation. In summary, the pri-
mary contributions of this study are as follows: 1) We propose a hemodynamic-
driven multi-prototypes network (HDMPNet) for one-shot segmentation, capa-
ble of generating high-quality segmentation maps even for discrete regions of
breast cancer tumors. 2) We present the Adaptive Superpixel Clustering (ASC),
a parameter-free module for adaptive prototype extraction with allocation, func-
tioning as a plug-and-play component. 3) We propose a cross-fusion decoder
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Fig. 1. Overview of the proposed Hemodynamic-Driven Multi-Prototypes Learning.

(CFD) that captures the coexistence characteristics between support and query,
refining the segmentation boundaries with increased precision. 4) Compared to
existing methods, our approach outperforms. Moreover, in external testing on
another dataset, it achieves optimal segmentation.

2 Method

The proposed model, illustrated in Fig. 1, is tailored for breast cancer data
analysis. Here, {Vt, t = 1, 2, . . . , T} represents a volumetric sequence of breast
cancer-enhanced magnetic resonance imaging, spanning from the pre-contrast
stage (t=1) to the post-contrast late stage (t=T). Concurrently, Vt = {St

D, D =
1,2,3, ...,K} denotes a set of three-dimensional consecutive slices of breast vol-
ume, with K indicating the number of slices, and t representing a specific moment
in pharmacokinetics. In our proposed model, we employ a shared encoder for fea-
ture extraction. Subsequently, we use pharmacokinetic modeling with the gate
recurrent unit (PkGRU) to learn pharmacokinetic knowledge. Following this,
clustering is applied to the support feature, generating multiple prototypes. The
query feature is then activated to produce a corresponding activate feature and
probability map. After that, we fuse the query features and support features
through the Cross-Fusion Decoder (CFD) to achieve segmentation results.

2.1 Pharmacokinetic Modeling with Gate Recurrent Unit

In the pharmacokinetic modeling branch, we employ PkGRU to model the in-
formation from several temporal sequences of MRI images. Specifically, as il-
lustrated in Fig. 2(a), PkGRU operates bidirectionally, capturing both forward
and backward information to learn comprehensive features. These features are
sequentially fed into the forward GRU module first and later into the backward
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Fig. 2. Elaboration diagram of different component modules: (a) PkGRU, (b) ASC,
and (c) CFD.

GRU module. Each GRU calculates update gates zt and reset gates rt, where xt

and the previous hidden state ht−1 are employed for storing updates, as follows:

zt = σ(Wzxt + Vzht−1), rt = σ(Wrxt + Vrht−1) (1)

Where σ denotes the sigmoid function. Wz, Vz, Wr and Vr are the learned
weight matrices. Subsequently, the hidden state ht is updated based on the gate
controllers zt and rt. Formally,

ĥt = tanh (Wxt + rtV ht−1 + b) , ht = (1− zt)ht−1 + ztĥt (2)

Where ĥt is denoted as the candidate hidden state, and b represents the bias
vector. Next, we concatenate the results obtained from the forward GRU model
hf
t and the backward GRU model hb

t to form the final result hB
t i.

2.2 Adaptive Superpixel Clustering

Inspired by SSN [8] and MaskSLIC [7], and acknowledging the challenge posed
by tumor discreteness, we propose an insightful approach: clustering tumor re-
gions into multiple superpixel centroids, treating each superpixel centroid as a
prototype. First, we input the support features Fs ∈ Rc×h×w, support mask
Ms ∈ Rh×w and initial superpixel seeds S0 ∈ Rc×Ns (where Ns represents
the number of superpixels), with S0 setting referenced from MaskSLIC [7]. We
transform the support feature, retaining only foreground information, resulting
in F ′

s ∈ Rc×Npm (where Npm is the number of pixels in the support mask). Fol-
lowing this, we engage in an iterative process, updating each superpixel centroid
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and redistributing each pixel accordingly:

Qt
pi = e−∥F

′
p−St−1

i ∥2

, St
i =

1

Zt
i

Npm∑
p=1

Qt
piF

′
i (3)

Where || · ||2 represents the distance calculation between two vectors. Qt
pi repre-

sents the association between each pixel p and each superpixel centroid at time
t. St

i denotes the update of each superpixel centroid, where Zt
i = ΣpQ

t
pi is the

normalization constant.
Next, we utilize masked average pooling to distill background information

into an additional prototype, subsequently merging it with the foreground pro-
totype. Next, we compute the affinity between the query feature Fq at each
spatial position and each prototype. Mathematically, this can be expressed as:

Ax,y
i = gφ(F

x,y
q ⊕ Si

a) i ∈ {1, 2, . . . , Ns + 1} (4)

Where Si
a denotes the i-th prototype, and ⊕ represents channel-wise concate-

nation. The function gφ(·) is utilized to compute the correlation between two
vectors. We employ three 1 x 1 convolutions, followed by a sigmoid activation
function to formulate gφ(·).

Next, our architecture comprises two branches. In the first branch, we employ
argmax to determine the index with the highest score for each spatial position,
yielding an activation map M ∈ R1×h×w. Subsequently, placing the correspond-
ing prototype at each position of the activation map yields activation feature
FA ∈ Rc×h×w. In the second branch, we remove the feature channels activated
by the background prototype and then apply a Max operation on the remaining
channels to obtain the probability map P. As shown in Fig. 2(b).

Considering adaptability, we define the number of superpixels as Ns:

Ns = min(

⌊
Npm

Ss

⌋
, Nmax) (5)

Where Ss is the average area of each initial superpixel seed, and Nmax can be
assigned differently based on various datasets.

2.3 Cross-Fusion Decoder

To address the challenge of inaccurate boundary segmentation, we build a Cross-
Fusion Decoder (CFD). The entire decoding structure is similar to U-Net [19].
We design a coexistence feature extractor in each decoding layer to capture the
coexistence features between the support and query. As illustrated in Fig. 2(c),
we first reshape the support and query features Fs,Fq ∈ Rc×h×w into Ws,Wq ∈
Rc×N respectively. Subsequently, we transpose Wq to obtain WT

q . We perform
matrix multiplication operations separately for Ws and Wq followed by merging
them together using a learnable parameter λ, which is formulated as:

W = WqW
T
q + λWsW

T
q (6)
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Where W ∈ Rc×c represents the channel-wise fusion weights. Next, we perform
matrix multiplication for W and Wq to obtain W′ ∈ Rc×N , and then reshape
it into F′

q ∈ Rc×h×w. Finally, a residual-like structure is adopted to reweight F′
q

and Fq to obtain Fq.

3 Experiments

Dataset: We evaluate our method on two publicly available datasets. (1) The
Breast-MRI-NACT-Pilot dataset [18] contains a total of 64 patients with the
contrast-enhanced MRI protocol: a pre-contrast scan, followed by two consecu-
tive post-contrast time points during the early and late phases. Molecular sub-
types for each patient are recorded in an additional clinical information work-
book. Inspired by Haibe-Kains et al. [5] and Li et al. [13], we categorize the data
into four classes: Basal-like, HER2-enriched, Luminal, and Normal-like (benign
tumor). (2) The Cancer Genome Atlas Breast Invasive Carcinoma Collection
(TCGA-BRCA) [14] includes longitudinal DCE-MRI studies of 139 participants.
We categorize the data according to the Breast-MRI-NACT-Pilot [18] typing
criteria and the same four categories above. Both datasets are available on The
Cancer Imaging Archive (TCIA).

Implementation Details: Our complete framework is implemented in Py-
Torch and trained on an NVIDIA GeForce RTX 4090. We conduct a 4-fold
experiment on the Breast-MRI-NACT-Pilot dataset [18], designating one typing
as an unknown semantic class once per-fold. Specifically, we select three typing
categories during the training process, leaving one typing for testing. Notably,
the semantic classes used for testing in the evaluation phase do not appear dur-
ing training. For the three fully supervised methods, we conduct two types of
experiments: one involves conducting independent experiments for each time se-
ries, while the other uses complete sequence. Finally, we select the best results
(U-Net [19] performs best with the complete sequence, while TransUNet [1] and
MSA [21] achieve their best results with the post-contrast late phase). For the
three FFS methods, we utilize our proposed PkGRU for time series processing.
We normalize all MRI scans to the range [0, 1] and utilize the Dice Similarity
Coefficient (DSC) as the evaluation metric.

Comparison With Existing Methods: We compare our method against
six approaches from two categories on the Breast-MRI-NACT-Pilot [18] breast
dataset: Few-Shot Segmentation (FSS), including BiGRU [9], PFENet [20], and
RAPNet [3], and fully supervised segmentation methods, including U-Net [19],
TransUNet [1], and MSA [21]. For the FSS methods, we all use a one-shot experi-
mental setup. Quantitative results are presented in Table 1, while Fig. 3 provides
a visual representation of the segmentation outcomes. Our method demonstrates
superior performance compared to other models, achieving an average Dice score
of 67.9%, as shown in Table 1. We speculate that PFENet’s poorer results may
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Fig. 3. Visual comparison of different segmentation methods.

Table 1. Quantitative Comparison (in Dice score %) of different methods on Breast-
MRI-NACT-Pilot.

Method Normal-like Luminal HER2-enriched Basal-like mean
U-Net [19] 55.1± 2.2 76.5± 2.5 66.0± 2.6 63.9± 2.8 65.4
TransUNet [1] 44.8± 2.8 54.6± 2.6 54.8± 3.2 50.7± 2.9 51.2
MSA [21] 42.7± 2.0 60.1± 2.1 50.4± 2.4 52.1± 2.5 51.3
BIGRU [9] 50.3± 1.8 69.1± 2.1 61.8± 2.2 59.4± 2.0 60.2
PFENet [20] 31.8± 2.9 52.5± 2.8 41.2± 2.7 40.9± 2.6 41.6
RAPNet [3] 30.7± 2.5 50.6± 2.9 40.2± 3.2 38.0± 2.2 39.9
Ours 60.7± 2.4 76.4± 2.0 69.1± 1.8 65.4± 3.1 67.967.967.9

stem from the domain gap between natural and medical images, as PFENet is
designed for natural images. RAPNet’s performance may be influenced by the
similar location of foreground regions in the processed dataset. It may be at-
tributed to the limited number of samples in the dataset, resulting in less than
ideal performance of TransUNet and MSA.

Ablation Study: We conduct extensive ablation experiments on the Breast-
MRI-NACT-Pilot dataset [18] to validate the effectiveness of the critical compo-
nents of our model. Our baseline utilizes single prototype learning proposed in
PFENet [20]. For 4D data, we directly concatenate temporal sequence informa-
tion through channel stacking and employ a lightweight encoder-decoder struc-
ture. The experimental results in Table 2 demonstrate the effectiveness of our
model components. Replacing the single prototype in the baseline with our ASC
module yields an average DSC improvement of 3.2%. We speculate that using a
single prototype to represent all category information may lead to ambiguity, ne-
cessitating more refined feature information. The addition of the PkGRU module
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Table 2. Ablation study of three component modules.

Experiments Normal-like Luminal HER2-enriched Basal-like mean
baseline 49.5± 2.0 67.7± 2.1 59.8± 2.1 57.6± 2.2 58.7
baseline+ASC 51.1± 1.8 70.2± 2.2 63.9± 2.2 62.2± 2.0 61.9
baseline+ASC+CFD 56.5± 2.0 74.5± 2.2 67.2± 2.1 64.3± 2.2 65.6
baseline+ASC+PkGRU 53.2± 1.9 72.3± 2.1 65.1± 2.0 63.8± 2.1 63.6
baseline+ASC+PkGRU+CFD 60.7± 2.4 76.4± 2.0 69.1± 1.8 65.4± 3.1 67.967.967.9

Table 3. External testing results of different methods on TCGA-BRCA(Dice score %).

External test Normal-like Luminal HER2-enriched Basal-like mean
U-Net [19] 60.2± 1.8 72.0± 2.2 83.0± 2.3 81.6± 2.5 74.2
TransUNet [1] 76.0± 2.2 71.1± 2.4 70.0± 2.8 79.4± 2.9 74.1
MSA [21] 68.4± 2.6 73.7± 2.4 83.9± 2.5 79.7± 2.4 76.4
BIGRU [9] 60.2± 2.5 66.2± 2.2 70.5± 2.8 68.1± 2.8 66.3
PFENet [20] 58.9± 2.5 61.1± 2.5 65.5± 2.5 64.8± 2.0 62.6
RAPNet [3] 48.9± 2.2 52.3± 2.5 55.1± 2.8 53.6± 2.2 52.5
Ours 64.0± 2.5 75.3± 2.8 87.7± 2.8 82.2± 2.4 77.377.377.3

increases the average DSC by 1.75%, potentially due to the limitation of channel
stacking in capturing pharmacokinetic knowledge. Subsequently, integrating the
CFD module enhances the average DSC by 3.775%. We attribute this improve-
ment to the comprehensive utilization of support features by CFD, extracting
coexistence characteristics between support and query data, and refining local
features of boundaries, which facilitates more effective decoding.

External test: MRI images may exhibit diversity due to variations in acquisi-
tion equipment, parameter settings, and data sources. This diversity can poten-
tially impact the performance of deep learning models, necessitating continual
fine-tuning or even retraining on new datasets. We train our model using three
subtypes of data from the Breast-MRI-NACT-Pilot dataset [18] and test it on
the fourth subtype from TCGA-BRCA [14]. Experimental results, as depicted
in Table 3, demonstrate that our approach achieves optimal performance, with
an average DSC of 77.3%. This achievement holds significant clinical relevance
in real-world applications and underscores the strong generalization capabilities
of our model.

4 Conclusion

We propose a novel one-shot segmentation method that leverages pharmacoki-
netic knowledge for clustering and guiding prototype allocation. This approach
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incorporates a decoder integrating support and query data, producing high-
quality segmentation results. Our method yields promising outcomes even for
breast cancer data with discrete tumor area samples. Additionally, during exter-
nal testing, our model adapts to new clinical tasks with just one label, addressing
challenges associated with limited annotated data in clinical settings. This ap-
proach holds significant potential for future applications.
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