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Abstract. The success of Large Vision Models (LVMs) is accompanied
by vast data volumes, which are prohibitively expensive in medical di-
agnosis. To address this, recent efforts exploit Parameter-Efficient Fine-
Tuning (PEFT), which trains a small number of weights while freezing
the rest for knowledge transfer. However, they typically assign trainable
weights to the same positions in LVMs in a heuristic manner, regardless
of task differences, making them suboptimal for professional applications
like medical diagnosis. To address this, we statistically reveal the nature
of sparsity and hybridity during diagnostic-targeted fine-tuning, i.e., a
small portion of key weights significantly impacts performance, and these
key weights are hybrid, including both task-specific and task-agnostic
parts. Based on this, we propose a novel Sparsity- and Hybridity-inspired
Parameter Efficient Fine-Tuning (SH-PEFT). It selects and trains a small
portion of weights based on their importance, which is innovatively es-
timated by hybridizing both task-specific and task-agnostic strategies.
Validated on six medical datasets of different modalities, we demon-
strate that SH-PEFT achieves state-of-the-art performance in transfer-
ring LVMs to medical diagnosis in terms of accuracy. By tuning around
0.01% number of weights, it outperforms full model fine-tuning. More-
over, SH-PEFT also performs comparably to other models deliberately
optimized for specific medical tasks. Extensive experiments demonstrate
the effectiveness of each design and reveal the great potential of pre-
trained LVM transfer for medical diagnosis.

Keywords: Parameter-efficient fine-tuning · Medical diagnosis · Vision
transformer · Sparsity and hybridity.

1 Introduction

With the support of the vision transformer and massive data, large visual models
(LVMs) have achieved great success [27, 7]. However, when it comes to profes-
sional tasks such as medical diagnosis, the performance of LVMs is still insuf-
ficient. Training medical-specific LVMs is prohibitively expensive, due to the
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Fig. 1: During PEFT, instead of heuristically assigning trainable weights to fixed
positions across various medical diagnostic tasks, we employ a data-driven ap-
proach to select key weights for each task, enabling more effective fine-tuning.

difficulties of acquiring a large volume of medical data [28, 23, 8]. To address
this, Parameter-Efficient Fine-Tuning (PEFT) is proposed, which tunes only a
small fraction of weights while freezing the rest [22, 12, 6]. It promotes effective
knowledge transfer, reduces optimization difficulty, saves storage burden, and
avoids over-fitting.

Recent PEFT efforts heuristically assign trainable weights to the same po-
sitions in LVMs. As shown in Fig. 1, they could be roughly divided into three
categories: (1) Prompt Tuning introduces trainable tokens while maintaining
the pre-trained weights frozen [16]. Techniques, such as the position of trainable
tokens [13, 19] and operations performed on them [26], are explored. Further-
more, the generalization capabilities are validated across different tasks, such as
image generation [29], image segmentation [21], and video understanding [14].
(2) Additive Tuning inserts new trainable modules (a.k.a, adapters) either
between or alongside existing transformer blocks [11]. A representative example
is AdaptFormer [4], which appends trainable encode-decoder modules to each
transformer block. Moreover, unlike most designs that incur additional compu-
tational overhead during inference, LoRA [12] utilizes low-rank decomposition to
integrate adapters into the original LVM, avoiding extra computational cost. (3)
Selective Tuning trains a subset of weights within a LVM without changing the
overall network structure, such as training all biases [33, 3], attention layers [30],
or normalization layers [2], while keeping the remaining weights frozen. How-
ever, the aforementioned methods add trainable parameters in a fixed manner to
the same locations, ignoring the diverse downstream tasks and image modalities,
therefore leading to suboptimal performance.

Motivated by this, we first conduct a statistical exploration of weight changes
between pre-trained and fully fine-tuned LVMs on medical diagnosis. Our analy-
sis reveals two significant findings: (1) Sparsity indicates that a minority of key
weights play a majority role in downstream adaptation. (2) Hybridity means
the positions of these key weights partially overlap across tasks, including both
task-specific and task-agnostic components. Based on the findings, we intro-
duce a novel strategy called Sparsity- and Hybridity-inspired visual PEFT (SH-
PEFT) for adapting pre-trained LVMs to medical diagnosis. SH-PEFT selects a



SH-PEFT for Medical Diagnosis 3

Fig. 2: We experimentally conclude the sparsity and hybridity nature of key
weight distributions from six medical datasets, by comparing differences be-
tween pre-trained and medical fine-tuned CLIP model. Sparsity indicates that
a few key weights largely impact performance, thereby motivating us to select
important weights for tuning. Hybridity indicates that key weights contain
both task-specific and task-agnostic parts, thereby prompting us to explore a
hybrid strategy to locate key weights for more effective PEFT.

subset of weights that potentially introduce significant impacts on performance
for tuning, based on their estimated importance. The importance of each weight
is innovatively approximated based on its hybrid contributions: its task-specific
role in minimizing loss for a specific downstream medical task, as well as its
task-agnostic significance within a LVM. The estimation criterion is simple and
effective, requiring only about 120 seconds for a dataset with 10k images, using
a ViT-B/16 transformer, which is far less than the subsequent training time.

Our contributions are three folds: (1) Based on our statistical analysis, we
reveal the sparsity and hybridity characteristics that exist in the process of
transferring a large vision model to medical diagnosis. (2) We propose a novel
Sparsity- and Hybridity-inspired Parameter Efficient Fine-Tuning (SH-PEFT),
which estimates the importance of each weight by hybridizing both task-specific
and task-agnostic strategies, and subsequently selects a small number of the most
important weights for effective tuning. (3) Extensive experiments on six medi-
cal datasets with different modalities reveal the effectiveness of our SH-PEFT:
it achieves state-of-the-art PEFT performance under a comparable number of
trainable weights; it performs comparably with models deliberately designed for
specific diagnostic tasks; its hybrid weight importance estimation strategy effec-
tively enhances performance.

2 Method

2.1 Statistical Evidence of Sparsity and Hybridity

For constructing effective PEFT for medical diagnosis, we first explore the fea-
sibility of tuning a few key weights and the proper location to introduce these
trainable weights. As shown in Fig. 2, we experimentally reveal the existence
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of sparsity and hybridity nature of the key weight distributions, by analyzing
weight differences between pre-trained and medical fine-tuned models.

Specifically, experiments are conducted on six medical datasets with different
modalities, to maximize the applicability of our conclusions to various diagnostic
tasks. Examples of six datasets are shown in Fig. 2. We choose CLIP [27] as the
LVM due to its widespread application and outstanding performance among
publicly available checkpoints. More details are elaborated in Sec. 3.1.

Sparsity indicates that a small ratio of key weights significantly impacts the
performance of knowledge transfer, suggesting the potential for selective fine-
tuning in medical PEFT. Given pre-trained weights Wori of a model ΦWori(·)
and fine-tuned weights Wft on a medical task, ∆Wft = |Wft − Wori| mea-
sures weight changes. We first identify top k% elements with the largest vari-
ations and directly replace weights in Wori at positions of top k% by the cor-
responding weights from Wft, denoted as Wori←ft@k%. Then the performance
of ΦWori←ft@k%(·) is directly validated, and results are shown in Fig. 2. Results
show that keeping around 10% of the changes could maintain around 95% of
the full fine-tune performance, revealing the feasibility of selective tuning for
medical PEFT.

Hybridity indicates that key weights contain both task-specific and task-
agnostic parts, suggesting the necessity of proposing a hybrid strategy for locat-
ing key weights. Given fine-tuned weights on different medical diagnostic tasks
Wft

Tm
and Wft

Tn
, we measure the positional overlap of the key weights between

them at different k% (5%, 1%, 0.1%, and 0.05%). Results in Fig. 2 show that,
in different tasks, most of the key weights do not overlap, indicating they are
task-specific. Meanwhile, positions of a small portion of key weights are shared
across different tasks, suggesting they are task-agnostic. This inspires us to hy-
brid both task-specific and task-agnostic strategies to explore the positions of
key weights.

2.2 Hybrid Weight Importance Estimation for PEFT

Inspired by the aforementioned findings, we propose SH-PEFT to adaptively
determine trainable weights in a model, by jointly considering their importance
in both the specific task and the model structure, as shown in Fig. 3

Given a dataset Dt, the learning objective is to minimize the empirical risk
E(Dt,W) by updating weights W in a model. For a model with m layers, W =
{w1,w2, ...,wm} and the n-th weight in layer m is wm,n. Its importance Im,n

could be estimated by:

Im,n = Itdm,n + λItam,n

= |∆E(Dt,W|wm,n → ŵm,n)|+ λ|∆E(D,W|wm,n → 0)|
(1)

The first term Itdm,n is task-dependent. It measures the change of empirical risk
caused by the weight update from wm,n to ŵm,n after training on Dt. The second
term Itam,n is task-agnostic. It measures the empirical risk change by removing
a weight wm,n on arbitrary task D, reflecting the significance of a weight wm,n
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Fig. 3: Inspired by the sparsity and hybridity, we propose a novel SH-PEFT
approach to fine-tune a few key weights for adapting pre-trained vision trans-
formers to medical diagnosis. The key weights can be effectively and quickly
identified by jointly considering their importance from both task-specific and
task-agnostic perspectives.

in the model. λ balances the values between the two terms. However, the two
terms are difficult to estimate. Because they require training or evaluating a
model several times for each weight, which is computationally prohibitive.

To address this issue, we estimate the empirical risk changes in two ways.
The first way is intuitive. We use the accumulation of gradients over several
iterations to judge the trend of weight changes, i.e., Itd−L1

m,n = ΣB
b=1∂Eb/∂wm,n,

where B is the number of iteration and ∂Eb/∂wm,n calculates the gradient on
each mini-batch of weight wm,n. L1 means it is the first estimation method.
The task-agnostic part is estimated by Ita−L1

m,n = |wm,n|, which is the absolute
value of the weight. It is based on the assumption that a large weight can cause
significant changes to the input features so that it plays a more significant role in
maintaining the functionality of the model than a small weight. This assumption
is previously applied in the model pruning tasks [24, 34] and is transferred to
PEFT scenario by our SH-PEFT.

The second way is inspired by [10], where the task-dependent importance
of wm,n could be estimated by its first-order Taylor expansion of loss L in its
vicinity range. It could be written as Itd−L2

m,n = ∂L/∂wm,n ∗ (ŵm,n − wm,n).
Since the estimation should be finished within a few forward passes, the weight
differences could be abbreviated as its gradient, so that Itd−L2

m,n ≈ (∂L/∂wm,n)
2.

To avoid inconsistent scaling between the two terms due to squaring, we also
apply squaring to the task-agnostic part Ita−L2

m,n = (wm,n)
2. Moreover, in both

ways, before applying λ, the second term is weighted by ΣItdm,n/ΣItam,n to balance
their scaling differences.

After estimating the importance of all parameters, we set a threshold τ based
on the number of trainable weights to be allocated. If the importance of a weight
is larger than τ , the weight can be updated; if it is smaller, it remains unchanged.
Therefore, the update strategy for each weight at step t+1 is:

wt+1
m,n = wt

m,n − η
∂L

∂wt
m,n

Mm,n , where Mm,n =

{
1 if Im,n > τ
0 else

(2)

, where Mm,n is a binary mask of weight wm,n and η is the learning rate.
It is worth noting that, although we gain inspiration from previous works [10,

24, 34], we have unique contributions. Specifically, our SH-PEFT differs from the
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most similar work, SPT [10], in three aspects: 1) The scope of weight se-
lection: SPT selects weights only from linear layers for data-specific tuning.
However, other layers like layer-norm also play an important role in PEFT [20,
2]. Our SH-PEFT extends the selection scope to all operations, which enhances
the model adaptability to downstream tasks. 2) The strategy of weight im-
portance estimation: SPT uses the square of the derivative to estimate the
weight importance in a task-specific manner. In contrast, we draw inspiration
from our discovered hybridity nature and jointly consider both task-specific and
-agnostic factors, leading to more reliable weight estimation strategy for better
PEFT. 3) The mode of usage: SPT works in conjunction with other PEFT
methods like adapters [11]. Differently, our SH-PEFT could work independently,
which flexibly circumvents the shortage of other methods, such as the computa-
tional overhead introduced by an adapter.

3 Experiment and Result

3.1 Training Details

Six datasets with different modalities are used for our statistical analysis and
quantitative evaluation in order to ensure the applicability of the conclusion and
method to diverse medical diagnostic problems. They include: D1: Chaoyang [35]
is a pathological dataset of the human colon. It has 4,021 training and 2,139 test-
ing images, covering 4 categories: normal, serrated, adenocarcinoma, and ade-
noma. D2: Covid19-CT [32] is lung CT dataset for diagnosing Covid-19. It has
425/118/203 images for training/validation/testing, respectively. D3: BUSI [1]
is an ultrasound image dataset for early diagnosis of normal, benign, or malig-
nant breast cancer, with 559/79/160 images for training/validation/testing. D4:
CXT3 [15] is a chest X-ray dataset from children including normal, bacterial,
and viral cases, with 4,708/524/1,248 images for training/validation/testing. D5:
OCT [15] is a retina OCT dataset, with 97,477/10,832/1,000 images for train-
ing/validation/testing. including choroidal neovascularization, diabetic macular
edema, multiple drusen, and normal. D6: LIUMC [25] is a colonoscopy dataset
for ulcerative colitis with 4 securities. It has 9,590 images for training and 1,686
images for testing.

Experiments are conducted on CLIP [27] pre-trained visual transformer of
ViT-B/16 structure. This is because its innovative training approach, which con-
nects images and text, has become a paradigm for other large-model training,
as well as due to its excellent performance among publicly available checkpoints.
During training, the final projection layer in vision transformer is replaced by a
L2 normalization and a linear layer. The training uses the SGD optimizer with
batch size 64. The initial learning rate is 0.001 and is adjusted by CosineAn-
nealing. Each dataset is trained for 40k iterations, and F1-value is the main
measurement of the final performance. The key weights are selected within one
training epoch. Unless otherwise specified, the SH-PEFT model uses IL2 strat-
egy with λ = 1, and selects 1% of the parameters as trainable parameters in the
following experiments
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Table 1: Comparison with state-of-the-art PEFT methods, measured by F1 (%).
‘S’, ‘A’, and ‘P’, denote selective, additive, and prompt tuning respectively.

Method (Pub’Year) Type D1 D2 D3 D4 D5 D6 Avg

Full Finetune S 80.2 73.5 82.5 76.3 94.2 69.1 79.3

Linear Prob S 68.3 76.4 76.0 79.6 81.9 60.4 73.8

Adapter-par (NeurIPS’22) [4] A 75.5 78.6 84.1 77.7 93.2 67.4 79.4

SSF (NeurIPS’22) [20] A 78.8 79.5 89.8 78.5 92.2 71.9 81.8

LoRa (ICLR’22) [12] A 81.9 82.4 87.8 78.0 96.3 67.9 82.4

VPT-Deep (ECCV’22) [13] P 70.4 78.2 75.1 78.0 82.3 64.2 74.7

VPT-Shallow (ECCV’22) [13] P 74.2 78.8 81.6 80.3 90.0 69.3 79.0

FT-LN (Arxiv’23) [2] S 74.2 75.5 79.6 76.4 87.2 68.1 76.8

BitFit (ACL’22) [33] S 79.1 80.0 86.1 73.6 93.3 72.2 80.7

FT-Att (ECCV’22) [30] S 81.1 81.6 88.8 79.4 95.8 70.1 82.8

SPT-LoRa (ICCV’23) [10] S+A 81.8 80.2 90.2 77.3 96.0 69.5 82.9

SH-PEFT (Ours) S 80.6 83.0 90.5 81.0 95.6 72.7 83.9

Table 2: Comparison with latest
efforts on Chaoyang dataset.

Method F1% ACC%

NSHE(TMI’22) [35] 76.5 83.4
PVB+L(ECCV’22) [17] - 84.3

GSB(NN’24) [9] - 82.5
SH-PEFT (Ours) 80.6 84.8

Table 3: Comparison with latest
efforts on COVID19-CT dataset.

Method F1% ACC%

SKNet(CVPR’19) [18] 76 77
ECAN (ECCV’20) [31] 74 75
ResGANet(MIA’22) [5] 81 80

SH-PEFT (Ours) 83.0 83.3

3.2 Comparison with State-of-the-art Methods

Superiority over PEFT methods: Table 1 shows our SH-PEFT outperforms
PEFT methods of different types on six medical datasets measured by F1-value
(Due to space limitations, ACC and AUC results are shown in Supp.). It demon-
strates that our method can effectively transfer general visual knowledge from
LVMs to medical diagnosis, indicating the effectiveness of our flexible selec-
tive learning method and hybrid feature weight importance estimation strategy.
Specifically, for fair comparisons, all models are trained following their official
implementation and use the same hyper-parameters mentioned in Sec. 3.1.
Superiority over Domain-specific Methods: Table 2 and Table 3 show that
our SH-PEFT achieves comparable results to recent deep learning methods that
are optimized for these specific tasks (Due to space limitations, more results of
other datasets are shown in Supp.). The outstanding outcomes indicate that our
SH-PEFT is effective and designing medical-targeted PEFT could be a promising
approach for better medical diagnostic applications.



8 M. Liu, L. Xu, S. Liu, and J. Zhang.

Fig. 4: Under the same ratio of trainable weights, SH-PEFT outperforms state-
of-the-art PEFT methods in terms of the average F1-value across six datasets.

Table 4: Ablation on hybrid
estimation strategies, measured on the

average of six datasets.
Ita Itd F1% ACC%

✓ 81.9 84.5
L1 81.3 84.3

✓ L1 82.4 85.0
L2 82.0 84.7

✓ L2 83.9 86.3

Table 5: Ablation on the balancing
weight λ, measured on the average of

six datasets.
λ F1% ACC%

1.5 82.4 85.1
1.2 83.1 85.6
1.0 83.9 86.3
0.8 82.6 85.1
0.5 82.5 85.1

Superiority Under Comparable Number of Trainable Weights: Fig. 4
demonstrates that, compared to other methods, our SH-PEFT achieves better
performance when the number of trainable parameters is similar. It is worth
noting that tuning around 0.01% number of weights by SH-PEFT outperforms
full model fine-tuning, indicating that our allocation of trainable parameters is
effective.

3.3 Ablation Studies

Hybrid weight importance estimation: Table 4 demonstrates that task-
specific and task-agnostic strategies could work complementarily to improve
performance, indicating the effectiveness of our hybrid strategy.
Effectivevness of λ: Table 5 demonstrates the performance is relatively robust
to the selection of λ, and the best performance is achieved when λ equals to 1.

4 Conclusion

We statistically reveal the characteristics of sparsity and hybridity when transfer-
ring general LVMs to medical diagnosis. Inspired by this, we propose SH-PEFT
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to allocate a small portion of trainable weights for tuning, based on their hy-
brid importance measured in both task-specific and task-agnostic manner. We
validate the effectiveness of PEFT on six medical diagnosis datasets with differ-
ent modalities. Results show that, with the same number of trainable weights,
our SH-PEFT outperforms existing PEFT methods in terms of accuracy. Fur-
thermore, the model fine-tuned by SH-PEFT outperforms deep learning models
specifically optimized for diagnostic tasks, indicating the effectiveness of our
strategy. Ablation studies further demonstrate the effectiveness of each design.
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