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Abstract. Eye gaze that reveals human observational patterns has in-
creasingly been incorporated into solutions for vision tasks. Despite re-
cent explorations on leveraging gaze to aid deep networks, few studies
exploit gaze as an efficient annotation approach for medical image seg-
mentation which typically entails heavy annotating costs. In this pa-
per, we propose to collect dense weak supervision for medical image
segmentation with a gaze annotation scheme. To train with gaze, we
propose a multi-level framework that trains multiple networks from dis-
criminative human attention, simulated with a set of pseudo-masks de-
rived by applying hierarchical thresholds on gaze heatmaps. Further-
more, to mitigate gaze noise, a cross-level consistency is exploited to
regularize overfitting noisy labels, steering models toward clean patterns
learned by peer networks. The proposed method is validated on two
public medical datasets of polyp and prostate segmentation tasks. We
contribute a high-quality gaze dataset entitled GazeMedSeg as an ex-
tension to the popular medical segmentation datasets. To the best of
our knowledge, this is the first gaze dataset for medical image segmen-
tation. Our experiments demonstrate that gaze annotation outperforms
previous label-efficient annotation schemes in terms of both performance
and annotation time. Our collected gaze data and code are available at:
https://github.com/med-air/GazeMedSeg.
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1 Introduction

Recent studies have witnessed increasing interest in incorporating human fac-
tors into deep learning applications [13,24]. Eye tracking data, serving as a pop-
ular tool reflecting the underlying cognitive processes [27], has stood out as a
promising and accessible media for human-AT interaction. Previous works com-
monly utilize gaze as auxiliary information to guide deep networks [9,15,22,23],
with recent explorations of employing gaze as the sole supervision signal for
label-efficient classification [19]. However, leveraging gaze for supervising im-
age segmentation models remains under-explored yet valuable, since it alleviates
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Fig. 1. Illustrations of full and different label-efficient annotation schemes. Dense bi-
narized gaze pseudo-masks are generated with various thresholds ¢, which trade off the
activation of the foreground and background.

annotators’” workload by alleviating the need for labor-intensive pixel-wise an-
notation. Unlike existing label-efficient annotation schemes that provide sparse
supervision with bounding boxes [6,20], points [4] or scribbles [25], gaze data
yield dense pixel-wise supervision signals, which is crucial for medical images
featuring ambiguous boundaries and low contrast. These motivate us to investi-
gate the potential of gaze-supervised medical image segmentation.

A straightforward way to gaze supervision is training with pseudo-masks
generated by binarizing gaze heatmaps with a fixed threshold, where the dense
gaze heatmaps contain continuous values indicating the degree of observational
attention. A similar approach is widely employed in image-level semantic seg-
mentation [3,26] for binarizing class activation maps (CAMs) [29]. In practice,
this approach yields suboptimal performance for gaze supervision due to the
distinct characteristics of gaze data as discriminative and noisy. Firstly, the
quality of pseudo-masks is sensitive to the selection of threshold (Fig. 1). And
it is unreasonable to rive precise object boundaries with a global threshold over
all images since human annotators usually pay discriminative attention even on
different parts of a single object. Secondly, the error in eye tracking and human
subjectivity makes gaze data a noisy supervision signal for segmentation. For
example, the annotator may check every suspicious area when annotating the
targets, thus some noisy gaze will be left. Current noise-robust approaches are
based on the symmetric or asymmetric assumptions of simulated noise and de-
sign robust loss functions [8,28] or regularization [14]. For correlated real-world
gaze noise, however, the assumptions on simulated noise do not necessarily hold.

The key to robust gaze supervision lies in the unity and consideration of the
aforementioned two characteristics of gaze data. Inspired by multi-expert mod-
els [17] benefiting from comprehensively integrating knowledge from multiple
experts, we propose to fuse multiple diverged networks learning from multi-level
human attention, simulated by applying a set of hierarchical thresholds on gaze
heatmaps. These networks are designed to learn heterogeneous knowledge from
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discriminative human attention. Moreover, to mitigate gaze noise, we exploit the
clean knowledge learned by peer networks of different levels to compensate for
overfitting gaze noise with analysis on the memorization effect of deep networks.

In this paper, we propose a new gaze annotation scheme that collects dense
annotation in an annotator-friendly and efficient manner for segmentation tasks.
Utilizing the scheme, we introduce the gaze dataset GazeMedSeg, which ex-
tends the Kvasir-SEG [10] and NCI-ISBI [2] datasets with gaze data of multiple
annotators. To train with gaze, we propose a multi-level approach that trains
multiple divergent deep networks to ensemble information from different levels
of human discriminative attention. In addition, a cross-level consistency regular-
ization term over predictions smoothed by a local pixel propagation module is
exploited to compensate for overfitting on noisy gaze labels. The advantage of
the proposed neat approach is in its ability to seamlessly fit into standard train-
ing pipelines with no changes to model architectures. In experiments, we validate
gaze annotation on polyp and prostate segmentation tasks using our GazeMed-
Seg dataset. Compared to the existing label-efficient annotation schemes, gaze
supervision narrows the gaps with full supervision and consistently boosts per-
formance by over 2.0% in Dice while being 15.4% faster to annotate, striking a
sweet trade-off between performance and annotation time.

2 Gaze Annotation Collection

Gaze annotation scheme. We develop the eye-tracking program utilizing SR,
Research Experiment Builder platform. At the beginning of gaze annotation,
each annotator goes through a 9-point gaze calibration process. Our gaze an-
notation collection consists of two stages. When presented with an image, the
annotator (with eye-tracker) first roughly scans the image and locates the target
objects. Following that, the annotator is requested to scan the objects thor-
oughly. Typically, participants start from central areas and then move on to the
boundaries, ensuring that all parts of the target are covered. This step avoids
partial activation by encouraging annotators to pay more attention to the target
objects. Therefore, the noise will be relatively weakened when normalizing the
heatmap. After finishing the annotating, a key is pressed to switch to the next
image. More details on the eye-tracking settings can be found in the Appendix.

GazeMedSeg dataset. Our collected GazeMedSeg dataset includes gaze an-
notations for two public medical segmentation datasets. We use the Kvasir-
SEG [10] dataset for polyp segmentation from gastrointestinal images, and the
NCI-ISBI [2] dataset for prostate segmentation from T2-weighted MR images.
The Kvasir-SEG dataset includes 900 training and 100 testing images and the
NCI-ISBI dataset includes 60 training and 10 testing volumes, where we retain
slices containing prostate and obtain 789 training and 117 testing images. One
annotator finishes the annotation of all images in the datasets, and we use it in
our major experiments. We also invite two additional annotators to annotate a
subset for sensitivity studies (Sec. 4.2). All annotators are experienced in medical
imaging and are well-trained for eye-tracking trials.
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Fig. 2. (a) Overview of the proposed method. For simplicity, we present the case with
two levels and Lcons of network 1. The consistency loss is applied to all networks in the
implementation. (b) We visualize the dynamics of early-learning (the Dice of output
and ground-truth on wrongly annotated pixels) and overfitting (the Dice of output and
noisy gaze pseudo-mask on wrongly annotated pixels) with and without the proposed
consistency regularization on Kvasir-SEG [10] training data. The proposed consistency
prevents overfitting on the noisy labels. We use two levels and plot the average of all
levels in this experiment. (¢) We visualize the gradients of cross-entropy and consistency
terms in the training process. The gradients that encourage dilation and erosion of the
predicted target are scaled for visualization in different colors. The cross-entropy term
gives noisy supervision of erosion on the top of the target object, which is compensated
by consistency with clean patterns of dilation learned by other networks.

3 Methodology

3.1 Multi-level Learning from Discriminative Attention

The original gaze data is a series of gaze positions collected at a certain frequency.
Given the gaze positions, the attention heatmaps are obtained by convolving an
isotropic Gaussian over them. We further apply dense conditional random fields
(CRF) [11] to enhance the initial heatmaps and generate pseudo-masks. However,
the quality of pseudo-masks varies significantly with distinct thresholds (Fig. 1).
It is hard to balance the over-activation and under-activation of foregrounds via a
fixed global threshold, because human subjectively pay discriminative attention
to target objects. For instance, annotators may focus on the most discriminative
part while only roughly scanning ambiguous parts of an object, which may be
neglected with a fixed global threshold.

Our idea is to train m deep networks simultaneously supervised by pseudo-
masks generated from m different thresholds (Fig. 2 (a)), simulating multi-level
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human attention. Each network is independently initialized, resulting in varying
learning capabilities. Being supervised by pseudo-masks with different activation
degrees, the networks evolve to learn various representations of human attention.

In practice, we select a pair of thresholds based on annotators’ feedback to
generate diverse heatmaps that closely resemble ground truth and complement
each other, with one tending to erode (under-activate) and the other dilate (over-
activate) targets. Additional thresholds are linearly interpolated from the pair.
Empirical results indicate that two levels are sufficient for decent performance
(Sec. 4.2). The final segmentation prediction is obtained by ensembling the pre-
dictions of these networks. We maintain the multi-level structure throughout
both the training and inference stages.

3.2 Cross-level Consistency for Noise Compensation

Another essential aspect of gaze-supervised segmentation is the inevitable noise
in the pseudo-masks. The noises can be introduced in the process of human
interpretation, gaze estimation by eye-trackers, heatmap generation, etc. We
observe a memorization effect [1] of deep networks when training with gaze data
on the medical image segmentation task. As shown in Fig. 2 (b), the model
captures clean patterns on incorrectly annotated pixels of pseudo-masks at the
beginning of training, but eventually overfits on noisy labels.

In the multi-level framework, though the networks are diverged with distinct
supervisions, they share the same input and various pseudo-masks supervise
different representations of the shared gaze data. Based on the assumption that
networks learn clean patterns at the beginning of the memorization, for each
network, we propose to exploit the knowledge learned by peer networks of other
levels to compensate for the noisy label via a consistency term.

To ensure noise-robust consistency, we first use a non-parametric local pixel
propagation (LPP) module to filter the feature of each pixel by propagating
the features of surrounding pixels in local regions inspired by recent works [5,7]
proving noise-robust feature correspondence distillation. Given the feature map
@, for each pixel feature ¢,, the LPP module computes the transform ¢, as:

~

bp = Z softmax (max{cos(¢p, @q),0}) - ¢, (1)

q€Pp

where cos denotes the cosine similarity, P, denotes the set of neighboring pixels
(e.g., a 3 x 3 region with dilation 1) of pixel p. This refinement has a feature
denoising/smoothing effect that reduces the outliers and enhances the features
with local context by introducing spatial smoothness which encourages spatially
close pixels to be similar. Given an arbitrary pair of levels 4,5 € Z*, where
1,j <m and i # j, the consistency loss applied on the i-th level maximizes dot-
product between the propagated prediction p of i-th level and non-propagated
prediction p’ of j-th level, i.e., E&ﬁz := —p'-p?. Notably, we have p’ = gl(&) for
the propagated prediciton and p* = g*(¢%) for the non-propagated one, where g
denotes the shallow classifier.
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3.3 Overall Optimization of Gaze Supervision

The overall loss for the i-th level is the combination of the supervision term and
the consistency term over all other peer-level j:

. . A U .
i __ i § (4,7)
L= CE + 1 Ecorjls7 (2)

m—=1 oy
J=1,j#i

where Lo is the cross-entropy loss and can be replaced by any other segmenta-
tion loss such as dice loss, and A is empirically set to 3. Note that when optimizing
the network of the i-th level, the parameters of all other networks are frozen.

The key to understanding the overall optimization process lies in the trade-off
of cross-entropy and consistency terms. Intuitively, Lcg trains a set of divergent
networks utilizing multi-level pseudo-masks. However, this term tends to vanish
after the early learning stage and each network starts to overfit on the respective
noisy label. The consistency term L.ons compensates for it, implicitly forcing
networks to continue learning from clean patterns learned by networks of other
levels. The mechanism can be viewed as pushing networks to struggle to find
a balance between divergence and consistency, in which the hyper-parameter \
controls this balance. It is worth noting that both divergence and consistency
are equally essential for optimization. The consistency term ensures robustness
to noise and the cross-entropy term expands and diversifies clean knowledge
learned and prevents collapsing into a single network.

4 Experiments

We validate the proposed gaze annotation scheme on the aforementioned Kvasir-
SEG [10] dataset for polyp segmentation and NCI-ISBI [2] dataset for prostate
segmentation. For all datasets, we only utilize weak annotations for training and
report performance on the testing set. We train a 2D UNet [18] from scratch for
15k iterations with a NVIDIA A40 GPU. We use Adam optimizer with batch
size 8 and learning rate 4e~*. More details on the training recipe can be found
in the Appendix.

4.1 Comparison Among Label-efficient Annotation Schemes

Comparison with state-of-the-art weakly-supervised methods. We com-
pare the new gaze-based annotation scheme with full mask supervision and other
state-of-the-art weakly-supervised methods using different sparse annotations in-
cluding box, point, and scribble on two datasets. To compare annotation time,
we also invite the same annotator to annotate a randomly sampled subset of
the Kvasir-SEG dataset containing 100 images using other annotation schemes
and report the annotation time in Table 1. Note that we annotate the bounding
box using extreme points clicking [16], and annotate points using the scheme
suggested by [4]. The estimated time is close to that reported in the litera-
ture [4,12,16,21], where the narrow gaps may come from the difference in the
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Table 1. Comparison with full mask supervision 75
and SOTA weakly-supervised methods using dif- 70
ferent annotation schemes. We report the mean 5
and standard deviation of three runs with different g
o

seeds. Dice is used as the evaluation metric. The 55 —e— BoxTeacher (box)
reported annotation time is estimated to annotate ~ 5° AGMM (point}
i . i L. 45 —¥— AGMM (scribble)
900 images in Kvasir-SEG [10] training set. —— Ours (gaze)
400 1 2 3 4
Pol P ot Annotation time (worker hours)
Method Sup. L rostate
¢ Anno. Time ‘ Dice Dice
Vanilla Full | 187 hrs | 8212514 | 8058200  © 18- 3. Performance versus an-
BoxInst [20] Box 3.1 hrs 65.7242.97 | 73.7841.15 notation time for different anno-
BoxTeacher [6]| Box 3.1 hrs 73.33+1.30 | 75.60+1.15 tation schemes. To match anno-
PointSup [1] | Point 4.8 hrs 73.0541.64 | 73.46 1471 tation times among annotatiion
AGMM [25] | Point 4.8 hrs 75.57£0.84 | 73.86+1.26 forms, we train a 2D UNet model
AGMM [25] |Scribble| 2.6 hrs 67.2311.02 | 72.70+1.03 using from 10% to 100% of the
Ours Gaze 2.2 hrs T7.8041102| 77641057 Kvasir-SEG training set.

Polyp
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Ground Truth Gaze Heatmap Pseudo-mask 1 Pseudo-mask 2 w/o consistency w/ consistency
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Fig. 4. Visualization of gaze data and predictions. The model without consistency term
ensemble the noise of different levels. Instead, the model regularized by consistency
learns clean patterns of pseudo-masks and demonstrates robustness to noises.

complexity of different target objects to be annotated. For all datasets, we sim-
ulate weak annotations based on the ground truth. Note that we randomly sam-
pled 10 pixels and 10 background pixels inside and outside the bounding box
respectively as suggested by [1] for point annotations, and we follow [21] to
simulate scribble annotations. In Table 1, our results show that gaze supervi-
sion outperforms previous weakly-supervised methods trained with other sparse
annotation schemes and achieves over 95% of the fully-supervised performance.

Trade-off between performance and annotation time. We compare the
proposed gaze annotation scheme with other label-efficient sparse annotation
schemes for image segmentation under the same annotation budget, i.e., the
time required to annotate training data. Fig. 3 presents our results on Kvasir-
SEG [10], proving that gaze annotation boosts weakly-supervised segmentation
by striking a sweet performance/annotation time trade-off by maximizing perfor-
mance with the least annotation time among existing weak annotation schemes.
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Fig. 5. Ablation studies on polyp segmentation. (a) Effects of proposed components.
(b) Effects of the hyper-parameter m (m = 2 by default) and A (A = 3 by default). The
orange and blue lines deficit the results of varying m and A, respectively. (c) Effects
of three different annotators (major annotator A and additional annotators B and C)
and comparison with other annotation schemes.

4.2 Ablation Studies

Modules and hyper-parameters. To evaluate the impact of critical com-
ponents of the proposed method, we study the effectiveness of the proposed
components for gaze supervision in Fig. 5 (a). We further present the result of
different choices of hyper-parameter m (number of levels) and A in Fig. 5 (b).
Our experiments show that m = 2 is optimal for gaze training while increasing
m gives limited benefits but leads to greater training and inference complexity.
The results on A echo the intuition of it in Sec. 3.3. We also observe that having A
greater than 7 results in a degenerated model that collapses to consistency with
performance worse than simply ensembling without consistency regularization.
We further visualize gaze-supervised predictions in Fig. 4, where the model with
consistency regularization demonstrates resistence to gaze noise.

Sensitivity to annotator. We invite two additional annotators to annotate a
subset of the Kvasir-SEG training set containing 500 images and train a UNet
on this subset using different annotation schemes. Note that all annotators re-
ceive the same training for gaze annotating. The results presented in Fig. 5 (¢)
show that though eye-tracking is subjective, different annotators demonstrate
comparable annotation time and supervision quality, consistently outperforming
other annotation schemes.

5 Conclusion and Future Work

In this paper, we propose to train deep networks with gaze annotations effi-
ciently collected using a new gaze annotation scheme for medical image segmen-
tation. The proposed method can be seamlessly integrated into standard training
pipelines. The results show that gaze annotation achieves a sweet performance
and annotation time trade-off compared to other annotation forms.

Our explorations give rise to several potential directions for future work: (1)
While we expect gaze supervision to be broadly applicable to medical applica-
tions, the multiplied complexities in the training and especially the inference
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stage hamper real-time scenarios since multiple networks are maintained even
though we have shown that m = 2 is sufficient. One potential direction is to
aggregate networks at a certain frequency in the training and only keep an ag-
gregated model for inference. (2) Though specialized hardware is required to
collect gaze data, we foresee that eye-tracking will not pose a bottleneck for clin-
ical practicality even at present with the advance of commercial VR/XR headsets
with precise and affordable eye-tracking capabilities. (3) We focus on binary seg-
mentation in this paper, and the extension to multiple cases is straightforward
via annotating each class separately and deciding the label for each pixel as the
class with the highest value in gaze heatmaps of different classes.
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