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Abstract. Deep learning-based segmentation models have made remarkable pro-
gress in aiding pulmonary disease diagnosis by segmenting lung lesion areas in 
large amounts of annotated X-ray images. Recently, to alleviate the demand for 
medical image data and further improve segmentation performance, various stud-
ies have extended mono-modal models to incorporate additional modalities, such 
as diagnostic textual notes. Despite the prevalent utilization of cross-attention 
mechanisms or their variants to model interactions between visual and textual 
features, current text-guided medical image segmentation approaches still face 
limitations. These include a lack of adaptive adjustments for text tokens to ac-
commodate variations in image contexts, as well as a deficiency in exploring and 
utilizing text-prior information. To mitigate these limitations, we propose Asym-
metric Bilateral Prompting (ABP), a novel method tailored for text-guided med-
ical image segmentation. Specifically, we introduce an ABP block preceding 
each up-sample stage in the image decoder. This block first integrates a symmet-
ric bilateral cross-attention module for both textual and visual branches to model 
preliminary multi-modal interactions. Then, guided by the opposite modality, 
two asymmetric operations are employed for further modality-specific refine-
ment. Notably, we utilize attention scores from the image branch as attentiveness 
rankings to prune and remove redundant text tokens, ensuring that the image fea-
tures are progressively interacted with more attentive text tokens during up-sam-
pling. Asymmetrically, we integrate attention scores from the text branch as text-
prior information to enhance visual representations and target predictions in the 
visual branch. Experimental results on the QaTa-COV19 dataset validate the su-
periority of our proposed method. 

Keywords: Medical Image Segmentation, Text-guidance, Bilateral Cross At-
tention, Asymmetric Prompting. 

1 Introduction 

Pulmonary diseases stand as a significant health challenge on a global scale, prompting 
extensive research into their diagnosis and treatment [1-2]. Within these endeavors, 
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increasing attention has been focused on the diagnostic value of radiological infor-
mation for pulmonary infectious diseases like COVID-19. Imaging modalities, such as 
X-rays, have become essential tools in this pursuit. However, traditional approaches to 
diagnosing pulmonary diseases through X-ray scans strongly rely on manual delinea-
tions of organs and lesions, which is quite labor-intensive and time-consuming. With 
the development of deep learning (DL), there has been a large amount of research lev-
eraging deep neural networks to process radiology images efficiently [3-7]. Within this 
field, DL-based medical image segmentation, which autonomously generates lesion 
masks for infectious areas, stands out as a crucial application. 

Traditional DL-based medical image segmentation methods primarily utilize convo-
lutional or transformer-based neural networks to directly generate prediction masks for 
tumor or lesion areas [8-17]. For example, Zhou et al. [9] enhanced the UNet [8] archi-
tecture by introducing additional up-sampling nodes and skip-connections to mitigate 
the semantic gap. Chen et al. [12] pioneered the utilization of the Transformer to con-
struct a UNet-like architecture for medical image segmentation, aiming to leverage the 
capabilities of the Transformer in capturing global contexts. However, these mono-
modal methods often demand a considerable volume of annotated image data to achieve 
satisfactory performance. Besides, many medical datasets are accompanied by diagnos-
tic textual descriptions or reports containing crucial information (e.g., descriptions of 
lesion severity and location), which can guide the segmentation process [18]. Yet, such 
complementary textual information is often disregarded in these studies. 

In recent years, multi-modal learning, especially in vision-language models [19], has 
garnered widespread attention from researchers for its robust generalization capabili-
ties. As for medical image analysis, some pioneering efforts [20-26] have harnessed 
complementary textual modalities and have developed various text-guided medical im-
age segmentation models, aiming to reduce the reliance on extensive medical image 
data and boost segmentation performance beyond image-only approaches. For instance, 
Li et al. [22] first proposed to leverage hybrid CNN and Transformer architecture to 
fuse medical images with textual information. Lee et al. [25] proposed a multi-modal 
fusion module that combines cross-attention with position attention, aiming to capture 
the associations between text and image for integration. Zhong et al. [26] proposed 
separate text and image encoders and designed a text-guided decoder to fuse features 
from both modalities during the decoding stage, achieving superior results. 

Among these studies, the predominant approach involves the use of cross-attention 
or its variants [22-26] to model multi-modal interactions between feature representa-
tions (tokens) of radiology images and textual descriptions. This is typically achieved 
through a dual-branch architecture, which relies on a textual backbone encoder as the 
text branch to generate static text embeddings, with the expectation that these embed-
dings will effectively interact with image features through cross-attention modules on 
the image branch. Despite yielding superior results, these methods still encounter two 
limitations. Firstly, static text embeddings fail to facilitate the adaptive and progressive 
tuning of the contained text tokens to accommodate different semantic contexts in var-
ied scales of image features. For instance, as visual features are gradually up-sampled 
towards the final output in the decoder, it is crucial to retain text tokens that contain 
more valuable information regarding segmentation targets, while removing tokens 
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containing irrelevant content. Secondly, the simplistic architectural design of the text 
branch also prevents text embeddings from generating additional text-prior information 
beyond merely being sent to the image branch for cross-attention computation. This 
neglected text-prior information, in fact, contains valuable insights that can enhance 
image representations and target predictions. 

To address the above limitations, we propose Asymmetric Bilateral Prompting 
(ABP), a novel method tailored for text-guided medical image segmentation. The core 
of ABP involves incorporating the ABP block preceding each up-sampling scale in the 
decoder. Compared to unilateral cross-attention adopted in previous dual-branch archi-
tectures, ABP exhibits improvements in two aspects. First, it integrates a symmetric 
bilateral cross-attention module in both image and text branches to explore and model 
preliminary multi-modal interactions. Second, it introduces two asymmetric operations 
to utilize information from the opposite branch to further guide modality-specific re-
finement within its own branch. Our main contributions can be summarized as: 
1) We present Asymmetric Bilateral Prompting (ABP), a novel dual-branch frame-

work for text-guided medical image segmentation. Notably, ABP first incorpo-
rates symmetric bilateral cross-attention for efficient inter-modality interaction 
and preliminary mutual refinement. 

2) Building upon bilateral cross-attention, ABP then introduces two asymmetric op-
erations. Within the text branch, we utilize attention scores from the image branch 
as rankings of attentiveness to prune and remove redundant tokens, ensuring that 
the image up-sampling progressively interacts with more attentive text tokens. 
Asymmetrically, in the image branch, we incorporate attention scores from the 
text branch as text-prior information to further enhance feature representations 
and target predictions. 

3) The state-of-the-art performance on the Qata-COVID-19 dataset demonstrates the 
superiority of our proposed method. 

 
Fig. 1. The overall framework of the proposed ABP framework. 
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2 Methodology 

2.1 Architecture 

The overview of the proposed ABP is illustrated in Fig. 1, which comprises an image 
branch and a text branch. During the encoding stage of the image branch, the X-ray 
image, denoted as 𝐼𝐼 ∈ 𝑅𝑅𝐵𝐵×𝐻𝐻×𝑊𝑊×𝐶𝐶, is processed through a visual backbone encoder con-
sisting of three encoder blocks (i.e., 𝐸𝐸𝐸𝐸𝐸𝐸 1 ~ 𝐸𝐸𝐸𝐸𝐸𝐸 3), to generate three encoded features 
at different scales. Concurrently, in the text branch, the associated textual description 
undergoes tokenization via a textual backbone encoder, obtaining the initial text tokens 
𝑇𝑇1 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀1×𝐶𝐶1 , where 𝑀𝑀1 represents the length of the encoded sequence, and 𝐶𝐶1 de-
notes its channel dimension. 

During the decoding stage, we utilize an image decoder consisting of 3 text-guided 
decoder blocks (i.e., 𝐷𝐷𝐷𝐷𝐸𝐸 1 ~ 𝐷𝐷𝐷𝐷𝐸𝐸 3) and a final decoder block to upsample the image 
features with the aid of textual information. Notably, before each guided decoder block, 
we represent the image features in token form and input both visual tokens and text 
tokens into a well-designed Asymmetric Bilateral Prompting (ABP) block to facilitate 
the fusion and interaction of visual and textual information. Assisted by ABP blocks, 
text tokens undergo specialized image-guided pruning to retain the most relevant and 
representative information to guide the segmentation, while image tokens benefit from 
text prior information to enhance its feature representation and target prediction. Upon 
processing in the ABP block, the text tokens are further projected by cascaded projec-
tors (i.e., 𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1 ~ 𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2), constructed by multiple multi-layer perceptrons 
(MLP) hierarchically, to align the channel dimensions of text tokens with those of im-
age tokens in the next scale. Meanwhile, the output image tokens are reshaped back to 
the original spatial scale. The text-guided decoder block performs joint upsampling 
with skip-connection features from the encoder by doubling the spatial scale while halv-
ing the channel dimensions. For the final decoder block, we do not precede it with an 
ABP block for guidance, but instead, pass its output through a segmentation head to 
obtain the final prediction mask for infection areas, denoted as 𝑀𝑀 ∈ 𝑅𝑅𝐵𝐵×1×𝐻𝐻×𝑊𝑊. 

2.2 Asymmetric Bilateral Prompting (ABP) Block 

Before the 𝑖𝑖-th text-guided decoder block (𝑖𝑖 = 1, 2, 3), we incorporate an ABP block to 
process the image tokens 𝐼𝐼𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖×𝐶𝐶𝑖𝑖  and text tokens 𝑇𝑇𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖×𝐶𝐶𝑖𝑖 , aiming to fully 
exploit their complementary information for mutual refinement on both the image and 
text branches. Here, 𝑁𝑁𝑖𝑖 = 𝐻𝐻𝑖𝑖 × 𝑊𝑊𝑖𝑖 represents the length of flattened image tokens, and 
𝑀𝑀𝑖𝑖 represents the length of text token sequence. Within the ABP Block, we first intro-
duce Symmetric Bilateral Cross-attention for the preliminary multi-modal fusion and 
interactions of visual and textual tokens. Additionally, two asymmetric operations, 
namely, Image-guided Pruning and Text-prior Incorporation, are separately applied to 
the text and image branches to enhance the learning of modality-specific information. 
Bilateral Cross-attention. After passing through the self-attention layers, image to-
kens 𝐼𝐼𝑖𝑖  and text tokens 𝑇𝑇𝑖𝑖  are interacted via Symmetric Bilateral Cross-attention. Un-
like previous attention-based prompt methods [22-26] that solely refine image features 
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with text prompts using unilateral cross-attention, our bilateral prompt aims to enhance 
the features of one modality with those of the other modality, which is more conducive 
to harmonizing the discrepancy between visual and text tokens. Specifically, 𝐼𝐼𝑖𝑖  and 𝑇𝑇𝑖𝑖  
are projected into 𝑄𝑄𝐼𝐼𝑖𝑖 , 𝐾𝐾𝐼𝐼𝑖𝑖 , 𝑉𝑉𝐼𝐼𝑖𝑖 , and 𝑄𝑄𝑇𝑇𝑖𝑖 , 𝐾𝐾𝑇𝑇𝑖𝑖 , 𝑉𝑉𝑇𝑇𝑖𝑖  by their corresponding projector 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖(·) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖 (·), as formulated below: 

𝑄𝑄𝐼𝐼𝑖𝑖 , 𝐾𝐾𝐼𝐼𝑖𝑖, 𝑉𝑉𝐼𝐼𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖×𝐶𝐶𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖(𝐼𝐼𝑖𝑖),                                (1) 
𝑄𝑄𝑇𝑇𝑖𝑖 , 𝐾𝐾𝑇𝑇𝑖𝑖 , 𝑉𝑉𝑇𝑇𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖×𝐶𝐶𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖 (𝑇𝑇𝑖𝑖).                               (2) 

Subsequently, multi-head cross-attention is performed separately on the image and 
text branches, where the query (𝑄𝑄) is derived from its own branch while the key (𝐾𝐾) 
and value (𝑉𝑉) are sourced from the opposite branch. This process is denoted as: 

𝐴𝐴𝐼𝐼𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖×𝑁𝑁𝑖𝑖 = 𝑆𝑆𝑃𝑃𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇�𝑄𝑄𝐼𝐼𝑖𝑖 ∙ 𝐾𝐾𝑇𝑇𝑖𝑖 /�𝐶𝐶𝑖𝑖�, 𝑃𝑃𝐼𝐼𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖×𝐶𝐶𝑖𝑖 = 𝐴𝐴𝐼𝐼𝑖𝑖 ∙ 𝑉𝑉𝑇𝑇𝑖𝑖 ,          (3) 
𝐴𝐴𝑇𝑇𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖×𝑀𝑀𝑖𝑖 = 𝑆𝑆𝑃𝑃𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇�𝑄𝑄𝑇𝑇𝑖𝑖 ∙ 𝐾𝐾𝐼𝐼𝑖𝑖/�𝐶𝐶𝑖𝑖�,𝑃𝑃𝑇𝑇𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖×𝐶𝐶𝑖𝑖 = 𝐴𝐴𝑇𝑇𝑖𝑖 ∙ 𝑉𝑉𝐼𝐼𝑖𝑖,         (4) 

where 𝑃𝑃𝐼𝐼𝑖𝑖 and 𝑃𝑃𝑇𝑇𝑖𝑖  represent the results of cross-attention. Then, they are further fed to a 
feed-forward network to derive the final output of bilateral cross-attention, denoted as 
𝑂𝑂𝐼𝐼𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖×𝐶𝐶𝑖𝑖  and 𝑂𝑂𝑇𝑇𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖×𝐶𝐶𝑖𝑖 . Note that, the generated cross-attention score maps 
𝐴𝐴𝐼𝐼𝑖𝑖  and 𝐴𝐴𝑇𝑇𝑖𝑖  are preserved to guide and facilitate subsequent asymmetric operations, fur-
ther enabling modality-specific refinement in the opposite branch. 
Text Branch - Image-guided Pruning. While bilateral cross-attention can effectively 
model preliminary interactions between multi-modal tokens, this symmetrical form of 
interaction may not comprehensively capture essential modality-specific information 
tailored to each modality’s characteristics. For example, as visual features are progres-
sively decoded and up-sampled toward the final output, it becomes crucial to retain text 
tokens containing pertinent information regarding segmentation targets (e.g., words in-
dicating lesion locations) while discarding tokens containing extraneous content (e.g., 
padding tokens and punctuation used as placeholders) [27]. In the text branch of the 
ABP block, we tackle this issue by utilizing complementary information (eg. attention 
score map) from the image branch to aid in the selection and pruning of text tokens. 

Specifically, we first apply the average operation to the cross-attention score map 
𝐴𝐴𝐼𝐼𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖×𝑁𝑁𝑖𝑖  from the image branch along the third dimension, yielding attentiveness 
values with the size of 𝐵𝐵 × 𝑀𝑀𝑖𝑖. Corresponding to the dimensions of 𝑇𝑇𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖×𝐶𝐶𝑖𝑖 , text 
tokens with higher attentiveness values are considered more relevant to the visual rep-
resentations, thus expected to play a more significant role in the subsequent decoding 
and segmentation processes. Therefore, we organize the text tokens in 𝑂𝑂𝑇𝑇𝑖𝑖  by ranking 
their attentiveness values in descending order, and preserve the top-(𝑀𝑀𝑖𝑖+1 − 2) tokens 
as attentive tokens, represented as [ATTN]. Note that, the first token in 𝑂𝑂𝑇𝑇𝑖𝑖 , represented 
as [CLS], is always kept as the class token that directly indicates the segmentation tar-
get, and thus remains unaffected in the pruning process. Regarding the remaining to-
kens, instead of straightforward omission, we choose to utilize their attentiveness val-
ues as weights in a weighted average operation to fuse them into a single token, denoted 
as [FUSE]. This approach ensures the retention of a more comprehensive set of infor-
mation during the pruning process. Finally, the pruned tokens can be represented as 
𝑃𝑃𝑇𝑇𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖+1×𝐶𝐶𝑖𝑖 = ([CLS][ATTN1] … [ATTN𝑀𝑀𝑖𝑖+1−2][FUSE]). In this manner, we pre-
serve tokens highly associated with the segmentation target while consolidating 
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relatively irrelevant tokens into a fused one, thus making the pruned token sequence 
more representative and enhancing segmentation guidance. 

After pruning, 𝑃𝑃𝑇𝑇𝑖𝑖  is then processed by a cascaded textual projector (𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖) 
and projected into 𝑇𝑇𝑖𝑖+1 ∈ 𝑅𝑅𝐵𝐵×𝑀𝑀𝑖𝑖+1×𝐶𝐶𝑖𝑖+1 to serve as the input of the next ABP block. 
Particularly, for the third ABP block, we omit its pruning process and 𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 3, as 
the obtained textual tokens do not interact with visual features later on. 
Image Branch - Text-prior Incorporation. Based on the relatively indirect interac-
tions enabled by bilateral attention between the text and image branches, we also in-
vestigate a more direct approach to integrating text-prior information into the image 
branch, aiming to maximize the utilization of textual prompts in improving image de-
coding and segmentation. Recognizing that directly concatenating text tokens into im-
age tokens may introduce the potential issue of domain discrepancy [28], we opt to use 
cross-attention score maps from the text branch as supplementary text-prior infor-
mation, incorporating them into visual representations and target predictions through 
two different approaches. 

To enhance visual representations, we use the cross-attention score map 𝐴𝐴𝑇𝑇𝑖𝑖 ∈
𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖×𝑀𝑀𝑖𝑖  from the text branch as text-prior representations, and concatenate it with the 
interacted image tokens 𝑂𝑂𝐼𝐼𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖×𝐶𝐶𝑖𝑖  along the channel dimension, resulting in 𝐹𝐹𝐼𝐼𝑖𝑖 ∈
𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖×(𝐶𝐶𝑖𝑖+𝑀𝑀𝑖𝑖). As 𝐴𝐴𝑇𝑇𝑖𝑖  contains information about the attentiveness of image features 
towards textual tokens, 𝐹𝐹𝐼𝐼𝑖𝑖 can be seen as image tokens further enhanced by text-prior 
information. Then, 𝐹𝐹𝐼𝐼𝑖𝑖 is reshaped to 𝐵𝐵 × 𝐻𝐻𝑖𝑖 × 𝑊𝑊𝑖𝑖 × (𝐶𝐶𝑖𝑖 + 𝑀𝑀𝑖𝑖) and fed into 𝐷𝐷𝐷𝐷𝐸𝐸 𝑖𝑖 with 
skip connections, yielding the input for the next block. 

In addition to utilizing text-prior information for feature-level enhancement, we pro-
pose constructing a text-prior prediction with 𝐴𝐴𝑇𝑇𝑖𝑖  and introducing an auxiliary con-
straint at the objective level. Specifically, we extract the first element (index: 0) of the 
attention map 𝐴𝐴𝑇𝑇𝑖𝑖  from the text branch, yielding 𝑆𝑆𝑇𝑇𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×𝑁𝑁𝑖𝑖 , which corresponds to the 
attention scores of the class token [CLS] in the sequence 𝑂𝑂𝑇𝑇𝑖𝑖 . As the [CLS] is retained 
throughout the entire text token pruning and image decoding process, 𝑆𝑆𝑇𝑇𝑖𝑖  contains in-
formation most representative of the segmentation target. Then we reshape 𝑆𝑆𝑇𝑇𝑖𝑖  to the 
size of 𝐵𝐵 × 1 × 𝐻𝐻𝑖𝑖 × 𝑊𝑊𝑖𝑖 and pass it through an MLP-based projector (𝑀𝑀𝑀𝑀𝑃𝑃(∙)), a sig-
moid function 𝜎𝜎(∙), and a bilinear interpolation (𝐵𝐵𝐼𝐼(∙)) for expansion, obtaining the 
text-prior prediction 𝑆𝑆𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×1×𝐻𝐻×𝑊𝑊 with spatial scales matching the ground truth 𝑌𝑌 ∈
𝑅𝑅𝐵𝐵×1×𝐻𝐻×𝑊𝑊. Utilizing 𝑆𝑆𝑖𝑖 at three scales, we construct the auxiliary loss as follows: 

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑−𝐶𝐶𝐶𝐶(𝑆𝑆𝑖𝑖,𝑌𝑌)3
𝑖𝑖=1 , 𝑆𝑆𝑖𝑖 ∈ 𝑅𝑅𝐵𝐵×1×𝐻𝐻×𝑊𝑊 = 𝐵𝐵𝐼𝐼 �𝜎𝜎 �𝑀𝑀𝑀𝑀𝑃𝑃�𝑆𝑆𝑇𝑇𝑖𝑖 ���,    (5) 

where 𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑−𝐶𝐶𝐶𝐶 denotes the weighted combination of Dice loss and cross-entropy loss 
with a ratio of 1:1. By applying auxiliary loss, we compel the textual class token [CLS] 
to provide crucial text-prior information that furnishes the most helpful guidance for 
segmentation. This, in turn, facilitates the generation of the final prediction. 

The overall objective function of our ABP method is defined as 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 𝑀𝑀𝑑𝑑𝑡𝑡𝑐𝑐 + 𝛾𝛾 ∙
𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎, where the classification loss 𝑀𝑀𝑑𝑑𝑡𝑡𝑐𝑐 also employs the above Dice-CE loss for the 
final prediction 𝑀𝑀, and the hyper-parameter 𝛾𝛾 is utilized to balance the two loss terms. 
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3 Experiments 

Implementation Details. Our network is implemented using the PyTorch framework 
on a single RTX 3090 GPU and trained for 100 epochs with a batch size of 32. The 
network weights are updated using the Adam optimizer, with an initial learning rate set 
to 5 × 10−5 and a minimal rate of 1 × 10−6. During training, a cosine decay scheduler 
is employed to adjust the learning rate. We explored various 𝛾𝛾 values ranging from 0 
to 1.0 with a step of 0.2, finding 0.4 yields optimal results across three metrics. As for 
token lengths, we referred to LViT [22] and set three candidate values (36, 24, and 18) 
for 𝑀𝑀1, and explored two descending ratios to determine 𝑀𝑀2 and 𝑀𝑀3: an arithmetic pro-
gression (1, 3/4, 2/4) and a geometric progression (1, 1/2, 1/4). We found that the arith-
metic progression with 𝑀𝑀1 set at 24 is optimal. Aligned with AT [26], the text encoder 
(CXR-BERT) is pretrained and fixed, while the image encoder (ConvNeXt-Tiny) is 
trained from scratch with its output dimension C1 set to 768. 
Dataset. We utilize the publicly available QaTa-COV19 dataset [7] to evaluate the ef-
fectiveness of our proposed method. This dataset was collaboratively constructed and 
expanded by Qatar University and Tampere University. The current version of the da-
taset comprises 9258 COVID-19 chest X-rays, with 5716 samples designated for train-
ing, 1429 samples for validation, and 2113 for testing, following the same configuration 
in [26]. Each image is accompanied by a ground-truth mask indicating the lung lesion 
regions affected by COVID-19. Concerning the text-guided segmentation task in QaTa-
COV19, substantial contributions have been made by Li et al. [22] and Zhong et al. 
[26], who expanded and enhanced the text annotations of the dataset. 
Comparative Experiments. To evaluate the effectiveness of the proposed ABP, we 
conduct a comparative analysis against four mono-modal segmentation methods: UNet 

Table 1. Quantitative comparison in terms of Dice, MIoU, Acc. 
Type Method Dice MIoU Acc 

Mono-modal  
segmentation 

methods 

UNet [8] 82.99 70.92 95.84 
UNet++ [9] 83.69 71.96 96.08 

TransUNet [12] 83.91 72.79 96.13 
AttnUnet [16] 82.40 70.06 95.67 

Text-guided 
segmentation 

methods 

LViT [22] 84.92 73.79 96.24 
CPAM [25] 87.43 78.32 96.96 

AT [26] 89.78 81.45 97.52 
ABP (Ours) 91.03 83.53 97.83 

 

 
Fig. 2. Qualitative comparison with other state-of-the-art methods. 
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[8], UNet++ [9], TransUNet [12], AttnUnet [16], and three multi-modal text-guided 
segmentation methods: LViT [22], CPAM [25], and Ariadne’s Thread (AT) [26]. Note 
that, we reproduced CPAM with the enhanced annotations [26], and AT is the current 
State-Of-The-Art method for text-guided segmentation on QaTa-COV19. To ensure 
fairness, we directly adopted the results of some methods from AT [26] and reproduced 
other methods using their optimal hyperparameter settings under the same evaluation 
process. Table 1 presents the dice score (Dice), Mean Intersection over Union (MIoU), 
and prediction accuracy (Acc) of different methods for segmentation results on the test 
samples. Upon observation, our proposed ABP method consistently outperforms the 
other methods on average across all three evaluation metrics. Compared to the AT, our 
method shows significant improvements by 1.25% for dice score, 2.08% for MIoU, and 
0.31% for Acc. We also conducted paired t-tests to verify our improvements. Results 
indicate that p-values on three metrics are all less than 0.05, indicating statistical sig-
nificance. The above enhancements can be attributed to our efficient architecture, 
which incorporates both symmetric bilateral cross-attention for preliminary interactions 
and asymmetric modality-specific operations for further refinement. 

Fig. 2 showcases the qualitative segmentation results derived from the test samples. 
In the second row, textual notes reveal that the infection solely appears in the left lung. 
However, without this textual guidance, distinguishing whether the right lung is in-
fected based solely on image content is challenging, resulting in poor performance of 
mono-modal methods. Notably, among the multi-modal methods incorporating text, 
only our ABP accurately segmented the left lung region without misdirected attention 
to the right lung, underscoring its exceptional ability to leverage textual guidance. 
Ablation Study. To assess the contribution of each proposed module, we progressively 
create ablation models as follows. Initially, we remove the ABP blocks and solely uti-
lize X-ray images for segmentation, establishing the mono-modal baseline referred to 
as Model-A. Then, we introduce textual descriptions as well as the image branch cross-
attention to Model-A, creating the multi-modal baseline Model-B. Based on Model-B, 
we integrate text branch cross-attention to form the complete symmetric bilateral cross-
attention as Model-C. Next, token pruning without the fusion of inattentive tokens is 
introduced, forming Model-D. Advancing from Model-D, we progressively incorporate 
fuse token, text-prior feature, and text-prior prediction (i.e., 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 ), yielding models 
Model-E, Model-F, and Model-G. As shown in Table 2, Model-A performs poorly due 
to the absence of textual assistance, while Model-B exhibits significant improvement 
with the incorporation of a simple image-branch cross-attention. Upon integrating com-
plete bilateral cross-attention, the performance surpasses that of the AT method, which 

Table 2. Quantitative comparison of ablation models in terms of Dice, MIoU, Acc. 
Model Modules Description Dice MIoU Acc 

A  Mono-modal Baseline 84.65 74.36 96.25 
B Bilateral 

Attention 
A + Image Branch cross-attention 87.26 80.22 96.91 

C B + Text Branch cross-attention 89.85 81.72 97.40 
D Text-branch 

Operation 
C+ Token Pruning w/o [FUSE] 90.32 82.34 97.67 

E D + [FUSE] Token 90.62 82.85 97.73 
F Image-branch 

Operation 
E + Text-prior Feature 90.88 83.19 97.76 

G (Ours) F + Text-prior Predcition (𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎) 91.03 83.53 97.83 
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uses unilateral cross-attention, demonstrating the effectiveness of our bilateral design. 
The subsequent introduction of our asymmetric operations in Model-D to Model-G fur-
ther enhances performance, highlighting the contributions of modality-specific pro-
cessing to text-guided medical image segmentation. 

4 Conclusion 

In this paper, we proposed Asymmetric Bilateral Prompting (ABP), a novel method for 
text-guided medical image segmentation, aiming to overcome the key limitations in 
current methods (i.e., the lack of adaptive adjustments for text tokens and the insuffi-
cient use of text-prior information). ABP integrates symmetric bilateral cross-attention 
for preliminary interactions and two asymmetric operations for modality-specific re-
finement. By utilizing attention scores from both the image and text sides, we enabled 
adaptive adjustments for text tokens and enhanced the image representations. Experi-
mental results on QaTa-COV19 dataset demonstrate the superiority of our method. 
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