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Abstract. Magnetic resonance spectroscopy (MRS) of brain tumors provides 
useful metabolic information for diagnosis, treatment response, and prognosis. 
Single-voxel MRS requires precise planning of the acquisition volume to produce 
a high-quality signal localized in the pathology of interest. Appropriate place-
ment of the voxel in a brain tumor is determined by the size and morphology of 
the tumor, and is guided by MR imaging. Consistent placement of a voxel pre-
cisely within a tumor requires substantial expertise in neuroimaging interpreta-
tion and MRS methodology. The need for such expertise at the time of scan has 
contributed to low usage of MRS in clinical practice. In this study, we propose a 
deep learning method to perform voxel placements in brain tumors. The network 
is trained in a supervised fashion using a database of voxel placements performed 
by MRS experts. Our proposed method accurately replicates the voxel place-
ments of experts in tumors with comparable tumor coverage, voxel volume, and 
voxel position to that of experts. This novel deep learning method can be easily 
applied without an extensive external validation as it only requires a segmented 
tumor mask as input. 

Keywords: Single-voxel spectroscopy, Voxel placement, Brain cancer, Tumor, 
Deep Learning. 
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1 Introduction 

Magnetic resonance spectroscopy (MRS) provides clinically-relevant metabolic infor-
mation from brain tumors by assessing over 20 brain metabolites relevant to tumor type 
and progression [1]. For example, MRS can accurately detect the presence of the com-
pound D-2-hydroxyglutarate, which indicates a mutation in the isocitrate dehydrogen-
ase (IDH) gene which is associated with increased patient survival [2-6]. Integrating 
this non-invasive method for biochemical assessment with existing imaging modalities 
has shown promise in enhancing diagnosis and treatment response monitoring [7]. 

However, one challenge hindering widespread adoption of MRS in clinical practice 
is its acquisition process, which demands expertise in precisely positioning the acqui-
sition volume prospectively at the time of scanning [8]. This volume, commonly called 
a voxel, is a 3D cuboid region that should be positioned within the tumor while avoiding 
other tissues. Placement of the voxel is critical for producing high quality MRS data, 
yet there is no objective way to determine an optimal placement. Placement can vary 
significantly depending on tumor size, location, and stage, making it subjective and 
leading to low spatial overlap of voxels even among experts [8, 9]. 

While several studies have proposed automated voxel placement methods, accu-
rately predicting voxels aligned with expert decisions remains challenging [8, 10-12]. 
Most prior works focused on voxel placement in normal brain regions, which can be 
defined a priori using atlases or other imaging landmarks. These pre-defined place-
ments are translated to an individual subject using image registration [10-12], but this 
approach does not work for brain tumors since the location is unknown until scan time 
[10-12]. In contrast, the method of Bolan et al. identified the tumor extent at scan time 
using a convolutional neural network (CNN), and then optimized a voxel placement 
within that tumor (position, size, orientation) by optimizing a hand-crafted objective 
function [8]. An objective function-based approach such as this may be effective in 
some cases, but may also fail to match experts' decisions entirely [8]. To address this 
challenge, we developed a deep learning-based model trained on expert-defined voxel 
placements to automatically generate voxel placements rather than optimizing objective 
function or hand-crafted models. We selected a CNN architecture for the model for its 
ability to capture high-dimensional information distributions [13]. Our proposed 
method also uses tumor masks as input, generated rapidly and automatically using a 
high precision tumor segmentation method. 

 

Fig. 1. Examples of experts’ manual voxel placements (red and yellow boxes) overlaid 
on T2-weighted FLAIR images. 
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2 Method 

2.1 Data Collection and Processing 

MR Images and Voxel Placement. MR images from 125 patients with gliomas were 
collected and anonymized for this study. Each case included standard clinical T1-
weighted and T2-weighted FLAIR images, acquired at either 1.5 T (n=29) or 3 T (n=96) 
without an exogenous contrast agent. These cases were randomly distributed into five 
datasets of 25 cases. We recruited five experts (neuroradiologists or physicists with 
substantial clinical MRS expertise) to perform voxel placements. Each expert was ran-
domly assigned two datasets of 25 cases, ensuring that each case was evaluated by two 
experts. Voxel placements were carried out using custom MRS localization software, 
referring to specific instructions: (i) position the voxel in the solid portion of the tumor; 
(ii) avoid black holes in the images (cysts, necrosis); (iii) rotate in one or two directions 
to better fit the voxel in the lesion; (iv) use a minimum volume of 6 mL. Examples of 
expert voxel placements are shown in Figure 1.  

Data Preprocessing. Brain images were skull stripped using HD Brain Extraction [13], 
and whole tumor masks were created using a nnUNet model trained from BRATS 2016 
and 2017 datasets [14-15] (train set, n = 484; test set, n = 266; test set dice metric = 
0.90). All images were resampled to 128×128×128 to fit into our available computa-
tional capacity in model training.  
 

 
Fig. 2. Overview of deep learning model. 3D conv is an encoder and ResBlock is a residual block. 
Inputs to the model are tumor mask and Euclidean distance map of tumor mask.  

2.2 Model Training and Testing 

Model Description and Training. A voxel placement is completely described by the 
vector parameter 𝜃 = [𝑥1, 𝑥2, 𝑥3, ℓ1, ℓ2, ℓ3, 𝛼1, 𝛼2, 𝛼3], where 𝑥𝑖  are the 3D spatial 
coordinates of the cuboid center, ℓ𝑖 are the three dimensions of the cuboid, and 𝛼𝑖 the 
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three Euler angles defining its rotation. Given a 3D binary tumor mask M, our task is 
to train a CNN f so that 𝜃 = f (M), which minimizes a loss function ℒ (𝜃, M) over the 
training set.  
 Our model simply consists of four 3D convolutional layers to extract spatial features, 
a residual block after each convolutional layer to preserve initial spatial features, and 
linear transformations with activation functions to predict the parameters for voxel 
placement (see Figure 2 and Supplementary Figure 1). The tumor mask M was 
cropped to a 50 × 50 × 50 pixel volume, centered on the centroid of the original tumor 
mask, and converted to a scalar distance map D using a Euclidean distance transform 
to provide increased spatial information. Fivefold cross-validation was used to assess 
the performance of the model to compensate for the small dataset. Each fold had 100 
cases for training and 25 for testing; the first fold was used as a model development set 
for hyperparameter adjustment. The model was trained for 60 epochs in all groups and 
the model from the last epoch was used for evaluation on each test set.  

Training Loss Function.  The loss function used to train the CNN used the weighted 
sum of square losses for each of the voxel parameters relative to the true (expert) values, 
plus two additional terms to encourage geometric consistency with the tumor mask. 
The total loss function was  

 ℒ = 𝜆𝑝𝑜𝑠ℒ𝑝𝑜𝑠 + 𝜆𝑑𝑖𝑚ℒ𝑑𝑖𝑚 + 𝜆𝑜𝑟𝑖ℒ𝑜𝑟𝑖 + (1 − 𝑓𝑡𝑢𝑚𝑜𝑟) +  ℒ𝑐𝑒𝑛𝑡𝑒𝑟 ,   (1) 

where ℒ𝑝𝑜𝑠 = ∑ (�̂�𝑖−𝑥𝑖)
23

𝑖=1  is the sum of square errors between true and estimated po-
sition coordinates, and ℒ𝑑𝑖𝑚 and ℒ𝑜𝑟𝑖 are the sum of square errors for the size and ori-
entation parameters. The function 𝑓𝑡𝑢𝑚𝑜𝑟  (𝜃, 𝑴) is the fraction of the voxel contained 
within the tumor map M, and ℒ𝑐𝑒𝑛𝑡𝑒𝑟  is a binary value indicating the center of the 
cuboid is inside the tumor map: 

 ℒ𝑐𝑒𝑛𝑡𝑒𝑟 = {
1, 𝑖𝑓 𝑴[𝑥1, 𝑥2, 𝑥3] ≠ 1

 0, 𝑖𝑓  𝑴[𝑥1, 𝑥2, 𝑥3] = 1,
 (2) 

We selected 𝜆𝑝𝑜𝑠 = 2, 𝜆𝑑𝑖𝑚 = 3, and 𝜆𝑜𝑟𝑖 = 3 for all subsequent results based on ini-
tial trial and error.  

Evaluation Metrics. In the test set, the dice similarity coefficient (DSC) was used to 
assess the spatial overlap of different voxels [16]. Since each image set had two expert 
voxel placements, the higher of the two DSC values was used for assessment. The  
𝑓𝑡𝑢𝑚𝑜𝑟 metric and total voxel volume were also used to evaluate performance. Tumor 
size and morphology were characterized by tumor volume. The tendency to rotate 
voxels was measured by the mean number of rotations per voxel; i.e., the mean count 
of |𝛼𝑖| > 0 per voxel. One-way ANOVA was used to compare the DSC, voxel volume 
and ftumor among the different placements, and results were considered significant if P 
< 0.05. The intraclass correlation coefficient (ICC) was used to measure the variability 
of voxel volumes between 𝒱𝑀 and 𝒱𝐷𝐿. 
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2.3 Related Work 

A previous study of automated voxel placement in brain tumors using an objective 
function optimization was implemented for comparison [8]. That method maximized 
the objective function 

 𝐹𝑜𝑏𝑗(𝜃, 𝑴) = exp (−
1

2
(

𝑉𝑡𝑢𝑚𝑜𝑟(𝜃,𝐌)−𝜇𝑉

𝜎𝑉
)

2

) exp (−
1

2
(

𝑓𝑡𝑢𝑚𝑜𝑟(𝜃,𝐌)−𝜇𝑓

𝜎𝑓
)

2

), (3) 

where 𝑉𝑡𝑢𝑚𝑜𝑟(𝜃, 𝑴) is the intersection volume of the voxel and tumor mask M, and 
𝑓𝑡𝑢𝑚𝑜𝑟(𝜃, 𝐌) is as defined above. The tuning parameters (𝜇𝑉 , 𝜎𝑉) and (𝜇𝑓, 𝜎𝑓) are the 
mean and standard deviation of the preferred 𝑉𝑡𝑢𝑚𝑜𝑟(𝜃, 𝑴) and 𝑓𝑡𝑢𝑚𝑜𝑟(𝜃, 𝐌) distribu-
tions. We used the same parameters as the previous work [8], but scaled the preferred 
voxel size and tumor fraction to match that of the expert placements in the model de-
velopment set (𝜇𝑓 = 0.95, 𝜎𝑓 = 0.05, 𝜇𝑉 = 12.9 mL and 𝜎𝑉 = 8.7 mL). 
 

 
Fig. 3. Comparisons of 𝒱𝑀 (red and yellow), 𝒱𝐷𝐿 (blue) and 𝒱𝑂 (pink) overlaid on T2w-FLAIR 
images. Note in (C) the objective function-based placement (𝒱𝑂) is in a different region of the 
tumor and does not intersect the selected plane. 

3 Results 

3.1 Qualitative Evaluation of Voxel Placements 

Examples of voxel placements produced manually by MRS experts (𝒱𝑀), the proposed 
deep learning method (𝒱𝐷𝐿) and the objective function method of Ref [8] (𝒱𝑂)are shown 
in Figure 3. The two manual voxel placements were generally similar, although in 
larger tumors the two placements sometimes diverged, sampling different regions of 
the tumor. Figure 3C shows an example of divergent manual placements in a large 
tumor. In general, it appeared that the deep learning method produced voxel placements 
comparable to that of at least one of the manual placements, with similar size, ftumor, and 
alignment with lesion morphology. The prior objective function method also provided 
reasonable voxel placements, but voxel was more often rotated and had different orien-
tation than manually placed voxels (example in Figure 3D).  



6 

3.2 Quantitative Evaluation of Voxel Placements 

Overall Performance. Prediction of voxel parameters from tumor masks was rapid, 
requiring an average of 3 ms for 𝒱𝐷𝐿, while 𝒱𝑂 averaged > 20 s. Both methods required 
skull stripping and tumor mask generation (averaging 10 s and 10 s respectively). The 
summary performance metrics for the three methods are shown in Table 1. Experts 
generated voxels containing a high portion of tumor (93.2%), but with a low average 
dice score between experts of 0.46. 𝒱𝐷𝐿 produced voxel placements similar to one of 
the two manual placements in each case, with a dice of 0.47 with the closest placement 
and a lower 0.39 to the further placement while the objective function method 𝒱𝑂 
showed lower dice scores than 𝒱𝐷𝐿. Both 𝒱𝐷𝐿 and 𝒱𝑂 showed a greater tendency to ro-
tate voxels than the experts. Fold-wise performance metrics for 𝒱𝐷𝐿 are provided in 
Supplementary Table 1.  
 The differences in voxel volumes are shown in the Bland-Altman plots of Figure 4. 
Figure 4A plots the differences between the two manual placements, which shows a 
low bias and a trend of higher agreement for smaller voxels. Figure 4B compares the 
𝒱𝐷𝐿 volumes to the 𝒱𝑀 volumes, showing the same trends (low bias, better agreement 
with small voxels) as seen in the inter-expert analysis of Figure 4A. The interclass 
correlation coefficients (ICC) for volumes with different placements were ICC  

(𝒱𝑀1, 𝒱𝑀2) = 0.298, ICC (𝒱𝐷𝐿 , 𝒱𝑀1) = 0.275, ICC (𝒱𝐷𝐿 , 𝒱𝑀2) = 0.362, ICC (𝒱𝑂, 𝒱𝑀1) =  
0.102 and ICC (𝒱𝑂, 𝒱𝑀1) = 0.102 suggesting that the similarity between 𝒱𝐷𝐿 and 𝒱𝑀 is 
comparable to inter-expert variation. The ftumor values were also similar between manual 
and deep learning placements, as shown in Table 1 and Figure 5A. 

Table 1. Comparisons between manual, deep learning-based, and objective function-based voxel 
placements. Values for experts are the mean of two experts per case. Values are mean ± S.D. 
unless stated otherwise. 

Method ftumor (%) 
Voxel Vol-

ume (mL) 

Dice (w/ closest 𝒱𝑀) 
# of rotated axes 

Dice (w/ two 𝒱𝑀) 

Experts 93.2 ± 11.5 12.38 ± 6.63 N/A 1.22 ± 1.02 0.46 ± 0.22 

Deep learning 91.6 ± 14.1 12.05 ± 4.08 0.47 ± 0.21 1.44 ± 0.88 0.39 ± 0.23 
Objective 
function 92.6 ± 10.4 12.34 ± 3.31 0.40 ± 0.21 1.48 ± 0.99 0.34 ± 0.23 

Dependence on Tumor Size. Voxel placement metrics were seen to depend on tumor 
size, as shown in Figure 5. As the tumor volume increased, ftumor (𝒱𝑀, r = 0.31; 𝒱𝐷𝐿, r 
= 0.36) and voxel volume (𝒱𝑀, r = 0.50; 𝒱𝐷𝐿, r = 0.49) also increased. In contrast the 
dice score between placements was lower in larger tumors (Fig. 5C). Together these 
plots show that the 𝒱𝐷𝐿 placements have similar characteristics as the experts’ place-
ments, and show greater agreement in smaller voxels. The volume of tumor in the voxel 
(Vtumor) also increased as the ftumor increased. Supplementary Figure 2 shows that the 
volume of 𝒱𝑂 is less dependent on tumor volume (𝒱𝑀, r = 0.50; 𝒱𝐷𝐿, r = 0.18) and has 
systematic rule-based trends in its voxel volume changes. 
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Fig. 4. Bland-Altman plot of voxel volume difference of (A) two 𝒱𝑀 and (B) 𝒱𝑀  and 𝒱𝐷𝐿. (A) 
Mean bias = -0.84 mL, lower limit = -17.34 mL and upper limit = 15.65 mL. (B) Mean bias = 
0.06 mL, lower limit = -13.57 mL and upper limit = 13.69 mL. 

4 Discussion and Conclusion 

In this study, we proposed a deep learning-based method for MRS voxel placement in 
malignant brain tumors. The need for manual voxel placement in single-voxel MRS has 
been a major limitation for clinical adoption as it requires expertise to size, position, 
and orient the voxel while rapidly interpreting the anatomy of normal tissues, cerebro-
spinal fluid, and tumors. An automated voxel placement method must be able to gen-
erate a voxel placement fast enough with characteristics (volume, ftumor, etc.) compara-
ble to that of the experts if it is to be useful in a clinical practice. 

However, visual inspection of the previous objective function-based voxel place-
ment method [8] revealed limitations in precisely locating the voxel where the experts 
would place them, especially for large tumors. In small tumors, the prior objective func-
tion method showed good performance in matching the voxel to lesion, but placements 
did not always reflect experts’ tendencies. Compared to that method, experts produced 
larger voxels and were less likely to rotate the voxel, possibly motivated by concerns 
about signal-to-noise ratio or potential artifacts due to multiply-rotated voxels. 

Quantitative analysis revealed discrepancies between volumes of objective function-
based voxels (𝒱𝑂) and manual voxels (𝒱𝑀), with 𝒱𝑂 volumes less dependent on tumor 
size. This disparity could result in important signals being missed in measurements 
when voxel volumes are insufficient. The deep learning approach addressed these chal-
lenges, achieving a high dice and ftumor comparable for 𝒱𝑀. 𝒱𝐷𝐿 not only matched 𝒱𝑀 
in voxel volume, but also reflected tumor morphology in voxel dimension ratios, as 
observed during visual inspection. Importantly, 𝒱𝐷𝐿 demonstrated high consistency in 
orientation control, aligning with 𝒱𝑀 orientation trends based on tumor size, crucial for 
maintaining MRS measurement quality. Moreover, 𝒱𝐷𝐿 exhibited similar distributions 
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of voxel volume and ftumor compared to 𝒱𝑀 from experts with a small mean bias differ-
ence and stayed within the variance observed among experts. 𝒱𝐷𝐿 was also generated 
fast enough within a second compared to the previous method of 𝒱𝑂, which required 
approximately half a minute for optimization. 

 

 
Fig. 5. Correlation plots between tumor volume and voxel placement characteristics, ftumor, and 
Vtumor for 𝒱𝑀 and 𝒱𝐷𝐿. 

It is also worthwhile to mention that our study utilized a specifically curated dataset 
tailored for this research, with 𝒱𝐷𝐿  trained on meticulously controlled voxel place-
ments. This contrasts with routine voxel placements in clinical practice, which are often 
performed quickly to maintain workflow efficiency. Thus, our model benefited from 
the experts’ precise control over voxel centers, dimensions, and orientations. Our model 
can be implemented in the scanner by acquiring T2w-FLAIR and T1w scans and auto-
matically sending them to a dedicated DICOM receiver. Image segmentation and voxel 
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placement will be performed automatically, and coordinates will be exported to a text 
file on a shared drive, where it will be imported by a custom MRS pulse sequence. 

There are several limitations in our study that can be improved. First, the voxel place-
ment dataset was small and increasing the cases may be helpful to improve performance 
and better evaluate the effect of tumor size and morphology. Second, including addi-
tional information as input to the model, such as masks of normal anatomy (cerebro-
spinal fluid, skull) and regions to avoid (necrosis, cysts), could lead to better matching 
of experts’ performance, as their placements may consider these regions. Third, using 
MR images acquired after gadolinium injection may provide more vascular information 
such as tumor core about spatial relationship between the voxels and tumors to the 
model.  
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