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Abstract. Colorectal cancer is a critical global concern, despite ad-
vancements in computer-aided techniques, the development of early-
stage computer-aided segmentation holds substantial clinical potential
and warrants further exploration. This can be attributed to the challenge
for localizing tumor-related information within the colonic region of the
abdomen when doing segmentation and that cancerous tissue remains
indistinguishable from surrounding tissue even with contrast enhance-
ment. In this work, a task-oriented Synthetic anatomical Semantics-
aware Masked Image Modeling (SaSaMIM) method is proposed that
leverages both existing and synthesized semantics for efficient utiliza-
tion of unlabeled data. We first introduce a novel fine-grain synthetic
mask modeling strategy that effectively integrates coarse organ seman-
tics and synthetic tumor semantics in a label-free manner. Thus, tumor
location perception in the pretraining phase is achieved by means of in-
tegrating both semantics. Next, a frequency-aware decoding branch is
designed to achieve further supervision and representation of the Gaus-
sian noise-based tumor semantics. Since the intensity of tumors in CT
follows Gaussian distribution, representation in the frequency domain
solves the difficulty in distinguishing cancerous tissues from surrounding
healthy tissues due to their homogeneity. To demonstrate the proposed
method’s performance, a non-contrast CT (NCCT) colon cancer dataset
was assembled, aiming at early tumor diagnosis in a broader clinical set-
ting. We validate our approach on a cross-validation of these 110 cases
and outperform the current SOTA self-supervised method for 5% Dice
score improvement on average. Comprehensive experiments have con-
firmed the efficacy of our proposed method. To our knowledge, this is
the first study to apply task-oriented self-supervised learning methods
on NCCT to achieve end-to-end early-stage colon tumor segmentation.
Our codes are available at https://github.com/Da1daidaidai/SaSaMIM.
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Fig. 1. An illustration of the difference between the proposed self-supervised method
and the other methods. Both of the contrastive learning-based method (a) and the
mask-based method (b) treat the unified image information only, whereas the proposed
method (c) considers multiple types of information including the image itself and the
task-related semantics.

1 Introduction

Colorectal cancer represents a major global health challenge, being the third most
commonly diagnosed cancer type and the second leading cause of cancer-related
deaths worldwide [12]. In addition to colonoscopy, MRI, and CT colonography-
based computer-aided diagnosis (CAD), contrast-enhanced CT (CECT)-based
CAD has been developed [23]. However, CECT is generally performed for di-
agnosis purposes after detection of polyps [13], which limits the practical use
of CAD systems to diagnosis after detection. The development of automated,
non-contrast CT (NCCT)-based colorectal cancer segmentation allows for more
applications in diverse clinical scenarios, thus presenting significant clinical po-
tential and research values. This segmentation process faces two main challenges:
1). Lack of NCCT data and annotations due to the difficulty of localizing colon
tumor-related information in the abdomen constrains the development of seg-
mentation methods. 2). Differentiating between cancerous and normal tissue is
very difficult due to the homogeneity of CT values between them and the absence
of contrast agent for enhancing cancerous tissue in NCCT.

Recent studies on the segmentation of colon cancer using CECT scans show
promise, but the previously mentioned issues remain. Researchers [23,22] had
considered the spatial relationship between colon and colon tumors but intro-
duced additional annotation burdens and the robustness of tumor segmentation
depends on the quality of the colon segmentation. Recent studies [24,11,2] ad-
dressing colon cancer segmentation within universal segmentation frameworks
underscore the substantial reliance on extensive annotated datasets as a notable
limitation. AG-CRC [25] tries to address these problems by utilizing imperfect
information for region-of-interest identification, though it also requires extensive
preprocessing and substantial training data for tumor localization.

To this end, a natural inclination is to consider self-supervised learning [8]
as a solution when facing data limitations. As shown in Fig. 1, although a wide
range of self-supervised learning methods have been implemented for different
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modalities of medical images [20,3,19], unified self-supervised algorithms tend
to be more effective on the organ segmentation task. However, lesion segmenta-
tion tasks, where the relative target is a much more disunified semantic modal-
ity within CT, further widen the gap between self-supervised pre-training and
downstream tasks. How to effectively represent goal-related semantics in the
self-supervised training phase to minimize such a gap between the pre-training
task and the segmentation task remains an important problem to be explored.

In this paper, we present SaSaMIM, a novel masked image modeling method
that aims to efficiently facilitate the practical unification of self-supervision and
segmentation tasks by effectively embedding tumor semantic synthesis and per-
ception of target semantics in self-supervised pre-training. SaSaMIM employs a
novel approach by leveraging imperfect colon localization and Gaussian noise-
based tumor semantic synthesis, achieving label-free task semantic synthesis. To
deepen the perception of Gaussian noise-based tumor semantics, an additional
frequency decoder branch was introduced for fine-grained frequency-aware super-
vision. Moreover, local masking [20] is integrated within the aggregation process
of multi-semantic tokens, enabling the generation of detailed and semantically
dense reconstructed representations. Our contributions are mainly three-fold:

– 1) We proposed a task-oriented masked image modeling framework for fine-
grained synthetic anatomical semantic perception to achieve high-performance
colon tumor segmentation in NCCT.

– 2) We designed a spatial-frequency dual-branch decoder to enhance the
model’s perception of Gaussian noise-based target semantics.

– 3) We demonstrated through extensive cross-validation experiments the ef-
fectiveness and high performance of the proposed model, as well as the lim-
itations of existing uniform semantic masked image modeling models.

2 Method

2.1 Synthetic Semantic-guided Masking

Target Semantic Generation Given the pre-training abdominal CTs XU ,
to localize the colon, TotalSegmentator [21] is applied to the CT scans. With a
coarse location of the colon available, morphological operations are developed to
synthesize correlation semantics XC . Specifically, let X̂C be denoted as the coarse
colon location. The process can be formulated as Eq. 1, where ⊕ and ⊖ represent
dilation and corrosion operations, S(r) represent the structural elements with
radius r. Here, we configured the radius to 3 voxel points.

XC = (X̂C ⊕ S(r))− (X̂C ⊖ S(r)) (1)

There is substantial evidence [15] that the intensity distribution of colon tumors
follows Gaussian distribution, and drawing inspiration from SynthesisTumor [7],
the synthesis of colon tumors is viewed as a process encompassing localization,
deformation, and texture simulation of Gaussian noise in CT images. First, rec-
ognizing the strong correlation between colon tumors and the bowel wall [25],
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Fig. 2. Overview of our proposed SaSaMIM pre-training method. Our method can be
understood in three steps. (1) Data preprocessing and tumor synthesis are employed
to generate unified semantics (original image) XU

∈C×H×W×D, correlation semantics
(bowel wall) XC

∈C×H×W×D, and the target semantics (tumor) XT
∈C×H×W×D, which

are then integrated. (2) The integrated semantic features are randomly and separately
masked at the channel level to achieve more fine-grained masking. The masked tokens
are concurrently decoded by two distinct branches: a frequency decoder and a pixel
decoder. (3) The pre-trained encoder is leveraged for the task of segmentation.

the potential tumor locations t are designated to be adjacent to both the outer
and inner parts of the intestinal wall, which can be denoted as,

t(x, y, z) ∼ Uniform ({(x, y, z) | XC [x, y, z] = 1 ∧ (x, y, z) ∈ XU}) (2)

Then, as most tumors grow from the centers and gradually swell. The region
delineation of the ellipsoid is performed based on selected potential points t,
denoted as Et ∩ XC ̸= 0. After elastic deformation [4], Et can simulate more
irregular tumor structures in real scenarios. Following [7], a predefined Gaussian
noise texture T (x, y, z) ∼ N (µt, σ

2
p) is added to the Et region after being blurred

by the Gaussian filter, which is set to further simulation of the tumor intensity
distribution. Thus, the target semantics (tumor) XT was generated, which can
be formulated as Eq. 3, where g(x, y, z;σb) denotes the Gaussian filter.

XT = T (x, y, z)⊗ g(x, y, z;σb) (3)

Fine-grained Semantic Masking The fusion semantics is denoted as Eq. 4,
which is defined as the input of our pre-training model.

XF = Concat(XU ,XC ,XT ) ∈ R3C×H×W×D (4)

Instead of creating and implementing more agent tasks for detailed pre-training,
we aim for the pre-training task itself to be more aligned with the semantic seg-
mentation task. Thus, local masking [20] is used to partially mask each channel
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with different semantic features, which can be denoted as Eq. 5, where T (·) de-
notes the tokenization operation in Vision Transformer, γ is the mask ratio set
to be 0.6 and XM denotes the mask.

T (X̂F ) = T (XF ) ∈ R(1−γ)·3C×HWD + T (XM ) ∈ R(γ)·3C×HWD (5)

2.2 Frequency Aware Masked Image Modeling
Architecture The architecture of our proposed SaSaMIM is depicted in the
orange block of Fig. 2, constructed upon a foundational masked autoencoder
(MAE) baseline. We adopt the encoder design from the MAE, utilizing a Swin-
UNETR [5] to map unmasked patches to discernible markers.

the tumor semantics had its own HU intensity set slightly higher than the
surrounding tissue. In traditional mask modeling, such fine-grained semantics
are difficult to perceive and reconstruct effectively in the spatial domain. Thus,
a frequency-aware branch is designed to perceive Gaussian noise-based seman-
tics in the frequency domain. The core structure of this decoder is the 3D Fast
Fourier transform and Inverse Fast Fourier Transform (FFT), and the learnable
parameter matrix Ω between them, which can be denoted as Eq. 6, where Xf

represents the latent frequency semantics, x, and skip represent the input for the
current layer and input for skip connections in U-shaped structures. LN denotes
layer normalization operation, F and IF represent the FFT and IFFT, respec-
tively. Following this, feed-forward networks equipped with residual connections
and Layer Normalization (LN) are appended.

Xf = IF{F{LN (Ω ⊙ (x + skip))}} (6)

Loss Function To effectively capture both spatial and frequency domain dis-
crepancies between the reconstructed and original images, the loss function is
composed of three components: pixel domain reconstruction loss, frequency do-
main weighted loss and regularization term.

Pixel Domain Reconstruction Loss The pixel domain reconstruction
loss is computed using the Mean Squared Error (MSE) between the original
image and the reconstructed image, defined as Eq. 7, where P and P̂ represent
the pixels set of the ground truth and the output, respectively.

Lpix = MSE(P, P̂ ) (7)

Frequency Domain Weighted Loss A weighted loss is introduced for the
frequency domain. The loss is computed as the weighted sum of the Euclidean
distance between the frequency representations of the original and reconstructed
images, modulated by a dynamic weight matrix, as shown in Eq. 8, where P
and P̂ represent the frequency band set of the ground truth and the output,
respectively. Same as focal frequency loss [9] the weight matrix W is derived
from the normalized difference between the reconstructed and original frequency
components, ensuring an adaptive focus on critical frequency mismatches.

Lfre = Mean(W ⊙ ∥F − F̂∥) (8)
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The overall loss function integrates the aforementioned components, as shown
in Eq. 9, where LL1

pix and LL2
pix denote the L1-paradigm and L2-paradigm of the

pixel domain reconstruction, respectively, to contribute to reconstructed feature
stability and smoothness.

L = Lfre + Lpix + α · LL1
pix + β · LL2

pix (9)

2.3 Downstream Segmentation

The pre-trained encoder weights are subsequently transferred for downstream
tasks and utilize the standard Swin-UNETR [5] architecture for colon tumor
segmentation. Specifically, to maintain input dimensional consistency and incor-
porate additional anatomical insights, the colon location data from TotalSegmen-
tator is also concated to the input image. Finally, the Dice loss [18] is employed
to facilitate network convergence.

3 Experiments

3.1 Datasets and Evaluation Metrics

The MSD-Task10 [1] abdominal CECT dataset (portal-venous phase) was cho-
sen as the pre-training dataset, 116 out of 126 were used for training and the
remaining 10 were used for validation. Subsequently, to assess the effectiveness
of our proposed method, we compiled a dataset of early-stage colorectal cancer
CT scans from Keio University Hospital. This dataset encompasses 110 patients
diagnosed with colorectal cancer. For each patient, abdominal NCCT scans were
obtained, with the tumor regions annotated by a seasoned gastroenterologist
and subsequently verified by a senior radiologist. All images were scanned with
an in-plane resolution of 512 × 512 pixels, and the z-axis dimensions varied from
249 to 1421 with a median of 474. The voxel spacing is fixed to 1.5mm, 1.5mm,
and 1.5 mm. We employed a five-fold cross-validation approach to evaluate the
dataset.

We adopt the four standard medical segmentation metrics Dice Score Co-
efficient (DSC), the 95th percentile Hausdorff Distance (HD95), Precision, and
Recall to evaluate the performance of our proposed approach.

3.2 Experiment Setup

All structures for downstream segmentation of self-supervised networks follow
the standard setup of Swin-UNETR [5]. The crop size is fixed to (96, 96, 96).
The training and testing phases of the proposed pre-training and segmentation
network were executed end-to-end on four NVIDIA Tesla V100 GPUs. The batch
size and iteration step were configured to 1 and 10,000, respectively. The initial
learning rate and learning rate decay were set to 3e-4 and 0.1 every 2,500 steps.
Adam [10] was employed as the optimizer.
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Table 1. Comparison with the State-of-the-art Medical Image Segmentation Method

Methods DSC (%)↑ HD (mm)↓ Precision (%)↑ Recall (%)↑

UNet [4] 57.99±2.44 N/A∗ 66.05±8.92 58.25±2.15
SegResNet [14] 57.47±2.13 144.06±14.72 60.28±6.14 57.43±1.62
Swin-UNETR [5] 58.24±2.47 159.60±30.95 60.95±5.61 59.44±1.37
UNETR [6] 52.19±1.17 175.14±7.62 52.46±2.09 54.51±2.38
UNETR++ [17] 56.80±3.08 151.68±17.41 58.63±4.47 57.37±2.78
MedNeXt [16] 57.61±3.13 153.20±17.55 60.43±6.82 58.17±3.24
SaSaMIM (Ours) 64.73±1.37 141.35±22.84 67.07±4.04 70.00±5.24

* Anomalous pixels in some results that lead to extreme HDs (e.g. infinite)

Table 2. 5-fold Comparison on State-of the-art Self-supervised and Universal Methods

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Mean
Method DSC↑HD↓ DSC↑HD↓ DSC↑HD↓ DSC↑HD↓ DSC↑HD↓ DSC↑HD↓

Inner-Cutout [19] 58.7 188 53.2 170 58.4 162 64.3 200 60.1 188 58.9 182
SimMIM [3] 55.2 163 52.1 202 56.2 169 62.8 174 56.5 152 56.6 172
Universal [11] 58.5 176 51.7 191 58.2 169 63.8 176 62.9 197 59.0 182
DAE [20] 57.4 183 53.9 176 53.0 192 56.7 185 65.4 166 59.3 180
SaSaMIM (Ours) 65.2 127 64.3 143 66.5 123 65.0 126 62.3 184 64.7 141

3.3 Comparison with the State-of-the-art Methods

For supervised methods, as shown in Table 1, we compare our approach with six
state-of-the-art 3D medical image segmentation models, including UNet [4], Seg-
ResNet [14], UNETR [6], UNETR++ [17], MedNeXt [16], and Swin-UNETR [5],
where UNETR++ are purely transformer-based; UNETR and Swin-UNETR are
hybrid models that employ different transformer as encoder and a CNN as de-
coder; UNet,SegResNet and MedNeXt are purely CNN models. From the quan-
titative results, it can be found that it is challenging to achieve fine-grained seg-
mentation with a simple transformer structure (e.g. UNETR, UNETR++) under
data constraints, which illustrates the demand and necessity of self-supervised
pre-training in the current scenario.

For the self-supervised method, as shown in Table 2, we conducted compar-
isons with the leading-edge self-supervised pre-training method for 3D medical
images, including Inner-Cutout [19]. This method represents a self-supervised
method that leverages contrast learning, explicitly tailored for Swin-UNETR.
Additionally, we compared with SimMIM [3] and DAE [20], both of which uti-
lize uniform and low-level features of the image itself for medical image mask
reconstruction. Notably, the models pre-trained using SimMIM demonstrated
lower performance across multiple metrics than Swin-UNETR models without
pre-training. This outcome supports our hypothesis that an excessive focus on
uniform semantics may not effectively enhance the network’s ability to segment
specific semantics, which is particularly true in scenarios where the feature rep-
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Fig. 3. Visualization on qualitative segmentation results of several exemplar cases. We
visualized and analyzed the segmentation results from axial view (row 1,2), coronal
view (row 3), and sagittal view (row 4). The red dotted rectangle area in the image is
enlarged and placed in the lower half to show the details.

resentations of specific semantics closely resemble those of uniform semantics. To
further argue that large-scale unified semantics cannot effectively contribute to
task semantic awareness, we additionally compared the Universal Model [11], and
we directly transferred the weights of its supervised training on nearly 2,000 3D
medical images. Overall, our proposed method improves several critical metrics
for medical image segmentation. Also, from the visualization of the qualitative
results in Fig. 3, it can be found that our proposed method is closer to the golden
standard and achieves effective segmentation in some problematic cases, which
are missed by other methods.
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Table 3. 5-fold Ablation Experiments of the Proposed Method

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Mean
Method DSC↑HD↓ DSC↑HD↓ DSC↑HD↓ DSC↑HD↓ DSC↑HD↓ DSC↑HD↓

BNet 59.4 173 54.5 184 55.9 141 61.3 199 58.5 183 57.9 176
BNet+§2.1 64.3 148 60.4 178 63.2 144 65.9 133 60.9 181 62.9 157
BNet+§2.1+§2.2 65.2 127 64.3 143 66.5 123 65.0 126 62.3 184 64.7 141

3.4 Ablation Study

To further validate the effectiveness of our primary components in SaSaMIM,
including Synthetic Semantic-guided masking (Sec.2.1) and Frequency Aware
Masked Image Modeling (Sec.2.2). All alternative networks were cross-validated
on the Keio-colon dataset with five folds, and we show the DSC and HD on
all folds for comparison. As depicted in Tab 3, BNet indicates the baseline self-
supervised strategy SimMIM. The introduction of Sec.2.1 brings about 5% im-
provement of Dice score. Furthermore, the adding of Sec.2.2 further brings about
1.8% of Dice score and 16mm Hausdorff Distance improvement.

4 Conclusion

We proposed SaSaMIM, an innovative masked image modeling method that
efficiently integrates self-supervision with segmentation semantics, focusing on
tumor semantic synthesis and perception in self-supervised pretraining. Leverag-
ing imperfect colon location and Gaussian noise for semantic synthesis without
labels, SaSaMIM enhances cancer lesion semantics perception through an addi-
tional frequency decoder branch. It also utilizes fine-grain masking in aggregated
tokens for detailed semantic-level representations. Extensive experiments show
SaSaMIM’s superiority over both existing medical image segmentation methods
and unified self-supervised pretraining methods for medical imaging.
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