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Abstract. Neural radiance fields have recently emerged as a powerful
representation to reconstruct deformable tissues from endoscopic videos.
Previous methods mainly focus on depth-supervised approaches based
on endoscopic datasets. As additional information, depth values were
proven important in reconstructing deformable tissues by previous meth-
ods. However, collecting a large number of datasets with accurate depth
values limits the applicability of these approaches for endoscopic scenes.
To address this issue, we propose a novel self-supervised monocular 3D
scene reconstruction method based on neural radiance fields without
prior depth as supervision. We consider the monocular 3D reconstruc-
tion based on two approaches: ray-tracing-based neural radiance fields
and structure-from-motion-based photogrammetry. We introduce struc-
ture from motion framework and leverage color values as a supervision
to complete the self-supervised learning strategy. In addition, we pre-
dict the depth values from neural radiance fields and enforce the geo-
metric constraint for depth values from adjacent views. Moreover, we
propose a looped loss function to fully explore the temporal correla-
tion between input images. The experimental results showed that the
proposed method without prior depth outperformed the previous depth-
supervised methods on two endoscopic datasets. Our code is available at
https://github.com/MoriLabNU/EndoSelf.

Keywords: 3D reconstruction · Self-supervised learning · Neural radi-
ance fields.

1 Introduction

3D scene reconstruction has emerged as a crucial field of study within mini-
mally invasive surgery (MIS) [9], offering significant advancements in surgical



2 Wenda Li et al.

procedures. Reconstructing scenes from endoscopic videos provides a broader
and more detailed 3D Field of View (FoV) in surgical navigation systems [18].
Moreover, it is used to facilitate the automation of robot-assisted MIS. The 3D
models of scenes and organs benefit virtual reality (VR) and augmented reality
(AR) for MIS [4, 24]. It allows for preoperative planning and surgical education
with efficient creation of surgical scenes [26].

Structure-from-motion-based photogrammetry and ray-tracing-based neural
radiance fields perform remarkably in monocular 3D scene reconstruction ap-
proaches. Photogrammetry includes two foundational approaches to realize 3D
scene reconstruction for different datasets. For stereo images, the approach in-
volves a systematic feature extraction process and the application of epipolar
geometry to facilitate accurate feature-matching across stereo views [8]. This
process culminates in generating depth maps converted from disparity maps
based on the stereo camera’s intrinsic parameters. For monocular videos, the
approach revolves around estimating an up-to-scale depth map through the pro-
cess of Structure from Motion (SfM) [10]. Both approaches ultimately lead to the
acquisition of discrete 3D points as separate voxels through a back-projection
process based on the pinhole camera model, thereby realizing 3D reconstruction.
Moreover, the approaches have been developed to the learning-based methods
with significant advancements [7, 17]. Furthermore, endoscopic scenes have no-
table applications for depth estimation and 3D reconstruction [1, 12, 14]. How-
ever, a limitation of these evolved techniques is that discrete 3D points neglect
the intricate topology of the scenes [26].

Different from generating discrete 3D points, neural radiation field (NeRF)
leverages ray tracing to render RGB images from new views by means of contin-
uous volumetric fields to achieve 3D reconstruction. This approach uses multiple
posed images as input. Mildenhall et al. [16] firstly proposed NeRF to realize
the view synthesis task with impressive achievements. Deng et al. [3] introduced
the depth values to supervise the process of NeRF and improved results in fewer
views. More recent works focus on enforcing the geometric constraints for NeRF.
Xu et al. [25] built a semi-supervised framework for NeRF with geometry labels
for depth values from multiple views. Choe et al. [2] introduced surface normal
for surface regularization to improve the fidelity of NeRF. There are more ap-
proaches to modify NeRF by models such as vision transformer and diffusion
model [13, 15]. NeRF is also applied to the surgical scenes. Gerats et al. [5] pro-
posed a dynamic depth-supervised NeRF for the operating room. Wang et al. [22]
realized the 3D reconstruction of the soft tissue by depth-supervised NeRF and
offered endoscopic datasets. This method is further refined by Zha et al. [26],
who introduced the surface normal to refine the 3D structures.

This work addresses a self-supervised monocular 3D scene reconstruction
based on posed endoscopic videos with neural radiance fields. The previous
methods [22, 26] were under a depth-supervised manner. And these approaches
were reduced significantly without depth values as supervision during training
time [22, 26]. For endoscopic datasets, collecting dense depth values is challeng-
ing due to the limited space and complex requirements of depth sensors [12].
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Fig. 1. Schematic flowchart of monocular 3D scene reconstruction of deformable tissues
with neural radiance fields.

Also, the researchers neglect the temporal correlation between input images.
We consider monocular 3D scene reconstruction by ray-tracing-based neural ra-
diance fields and structure-from-motion-based photogrammetry. We utilize the
structure from motion framework to complete the pixel-matching process based
on the synthesized depth values and the endoscope’s poses. Color is the only su-
pervision signal in this process to complete a self-supervised learning strategy. In
addition, we explicitly optimize the depth values obtained from the ray-tracing-
based neural radiance field by introducing the geometric constraints between
adjacent views. The locations of the corresponding depth values from adjacent
views are also based on the back-projection process. To fully explore the tempo-
ral information, we propose a looped loss function for the whole optimization.

Our main contributions are summarized as follows. (i) We propose a self-
supervised monocular 3D scene reconstruction with neural radiance fields on
endoscopic videos to relax the dependence on depth in the previous methods. (ii)
We explicitly introduce the geometric constraint on the predicted depth values
from adjacent views. (iii) We propose a looped loss function for the optimization
to explore the temporal information between the input images fully.

2 Method

2.1 Preliminaries

Problem Setting We aim to render RGB images from new views and recon-
structions. Our method processes a series of data as {(Ii,Mi,Pi, ti)}Ti=1. Here,
T stands for the total number of frames. For each frame Ii ∈ RH×W×3 denotes
the RGB image. Following the previous works [22], we also use the foreground
mask Mi ∈ RH×W to filter out irrelevant pixels. The timestamp ti = i/T repre-
sents the normalized time. Pi ∈ R4×4 is the endoscope’s pose corresponding to
Ii from the view at time ti. In addition, K ∈ R4×4 is a matrix with the intrinsic
parameters of the endoscope used in the self-supervised learning strategy.

Pipeline We implement a mask-guided sampling strategy [22] to respectively
select valuable pixels from three input frames: reference image Ir and source im-
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Fig. 2. Schematic process of self-supervised learning strategy to complete photometric
loss and depth consistency loss with designed looped loss.

age Is. Ir is captured from the viewpoint at time tr, and Is is captured from the
viewpoint at time ts, including viewpoint at times tr−1 and tr+1. Ir and Is belong
to Ii. As shown in Fig. 1, we project 3D rays and sample points along the rays
from these selected pixels. The multilayer perceptron (MLP) utilizes these sam-
pled points to predict colors Ĉr and Ĉs with corresponding depths D̂r and D̂s

by volume rendering method [21]. Then, we search the matched pixels between
Ĉr and Cs based on D̂r through structure from motion framework. This allows
to generate the transformed color Ĉs→r to complete a self-supervised learning
strategy. Inspired by [20], we tailor a looped loss function with photometric loss
and depth consistency loss to train the networks. Fig. 2 shows the process of
completing these loss functions under the self-supervised learning strategy.

2.2 Self-Supervised Learning with Depth Consistency

Structure from Motion Framework Inspired by the monocular depth esti-
mation [27], we consider the self-supervised learning strategy as a view synthesis
process based on pixel-matching process between adjacent images, as shown in
Step 1 in Fig. 2. Following the pinhole camera model, we can back-project one
pixel with 2D coordinates p to a 3D point in the current camera coordinate
system by

Qp = K−1Dpp, (1)

where Q is the point cloud included 3D points based on the back-projection
process. Qp is a back-projected 3D point corresponding to the 2D position
p. Here, Qp is a vector containing three values. And p is represented with
homogeneous coordinates in a vector containing three values. K is the intrinsic
parameters of the endoscope, represented as a 3× 3 matrix. D is a matrix that
represents the depth map. Dp is the depth value at 2D coordinates p in depth
map D, which is scalar value. Given the sampled pixels at 2D coordinates pr

in reference image Ir, we obtain the 3D points from pixels at pr through the
back-projection process based on Eq. 1. The back-projected 3D points are in the
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different coordinate systems from different views. Therefore, we utilize the poses
of the endoscope to calculate the transformation matrix as the relative pose
from the view at time tr to the adjacent view at time ts as Tr→s = (Ps)

−1
Pr.

Here, Pr and Ps are the poses of the endoscope. The corresponding pixels at
2D coordinates in source image Is can be obtained by

p̂s = KTr→sD̂
r

prK−1pr, (2)

where p̂s is the 2D coordinate of the pixel warped from the pixel at 2D coordinate
pr in reference image Ir. D̂

r

pr is the depth value at 2D coordinates pr in the
predicted depth map D̂

r
, which is scalar value. We then generate the reference

color based on the matched pixels (pr, p̂s) as Cs→r
pr ← Cs

p̂s . As shown in Step
2 in Fig. 2, we calculate the photometric correspondence as a supervised signal
by

E
(
Ĉ

r
,Cs→r,pr

)
= α

1− SSIM
(
Ĉ

r
,Cs→r,pr

)
2

+ (1− α)
∣∣∣Ĉr

pr −Cs→r
pr

∣∣∣ , (3)

where Ĉ
r

is the synthesized color value based on the reference image’s pose Pr

and estimated color value along ray by MLP. α is set as 0.85 followed as [6]
for structured similarity (SSIM) [23] and L1-norm operator |·|. Furthermore,
we utilize the minimum photometric error [6] in this self-supervised learning
strategy by

Lp =
1

Nm

∑
pr∈Hr

Mpr

(
min
s

E
(
Ĉ

r

pr ,Cs→r
pr

))
, (4)

where r is the view of the reference image at time tr, and s means the view of
the source image at time ts. Time ts is time tr−1 or time tr+1. M is the ray
foreground mask. Hr is the set that includes pixels’ coordinates in the Ĉ

r
. Nm

is the number of valuable pixels selected by ray foreground mask M.

Depth Consistency Loss NeRF-based approaches learn a scene’s continuous
volumetric density and color distribution using multi-view posed images as input
to synthesize images from new views to complete 3D reconstruction. However, the
previous method ignores the temporal correlation based on geometric constraints
between input images [22, 26]. In the self-supervised learning strategy, we provide
pixel-matching process based on the estimated depth and intrinsic parameters.
As shown in Step 3 in Fig. 2, we provide consistency on synthesized depth
from MLP through the pixel-matching process to provide multi-view geometric
constraints by

Ld =
1

Nm

∑
pr∈Hr

Mpr

∣∣∣D̂r

pr − Z
(
KTs→tD̂

s

p̂sK−1p̂s
)∣∣∣ , (5)

where D̂
r

is the synthesized depths from reference image Ir. D̂
r

pr is the depth
value at the 2D coordinate pr in D̂

r
. D̂

s

p̂s is the depth value at the 2D coordi-
nate p̂s in D̂

s
. pr and p̂s are matched pixels based on the Eq. 2. Ts→r is the
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transformation matrix from the view at time s to the view at time s defined by
Ts→r = (Pr)

−1
Ps. Operator Z extracts the value in the third channel. Here,

we obtain the value in the z-axis from the 3D points back-projected at p̂s.

2.3 Optimization

Rendering Given an endoscope’s pose Pi =
[
Ri|ti

]
, each pixel’s 2D coordinate

p ∈ R2 determines a ray in the world coordinate system, whose origin is the
endoscope center of projection oi = ti and whose direction is defined as vip =

RiK−1p. We sample 3D point along the viewing ray y associated with p at
depth candidate zn as yi,n

p = oi + znvip . Here, n is the index of the depth
candidate. The color Ĉ and depth D̂ of the ray can be approximated by

Ĉy =
∑Ni

i=1
T iαici, D̂y =

∑Ni

i=1
T iαizi, (6)

where T i =
∏i−1

j=1(1 − αj), αi = max((ϕ(ρi) − ϕ(ρi+1))/ϕ(ρi), 0) and ϕ(ρ) =

(1 + e−ρ/s)−1. c is the predicted color as the output of the MLP.

Loss Function We use training objectives as basic and self-supervised loss
functions. The basic loss function minimizes the difference between the actual
values Cr and rendered values Ĉr as Lb =

1
Nm

∑
pr∈Hr

∥Mpr

(
Ĉrpr −Crpr

)
∥1. In

addition, we use the geometric loss Lg as one of the basic terms in the previous
method [26]. We use the predicted depth value instead of the actual depth value
as ground truth for the geometric loss Lg. The self-supervised loss function com-
pletes the self-supervised learning strategy by structure from motion framework
with depth consistency to provide temporal correspondence.

To enhance the utilization of temporal correlation, we treated each input
image as a reference image from a clip of the monocular video to establish a
looped prediction learning framework, as shown in Step 4 in Fig. 2. The overall
loss in the final computation is derived as an average of the errors from each
individual combination as Lf = 1

Nk

∑Nk

k=1 Lk
b + λLk

g + γLk
p + δLk

d. k is the index
of reference view. Nk is the number of input images, and Nk equals 3.

3 Experiments

3.1 Experiment Settings

Datasets and Evaluation Our research involves experiments on two publicly
available endoscope datasets: ENDONERF [22] and SCARED [1]. The ENDON-
ERF dataset provides two examples of in-vivo prostatectomy data, complete
with manually labeled foreground masks. The SCARED dataset consists of 35
endoscopic videos taken from 9 various scenes. To prepare the data for our exper-
iments, we followed a process established in the previous method [26]. Also, we
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Fig. 3. Comparison of rendered RGB images. The first row shows the original image
as color ground truth. Our method renders RGB images with more details (yellow
arrows). Previous methods lost the tissue structures in the corners (white arrows).

adopted all the scenes in ENDONERF and SCARED to conduct the comparison
experiments. This involves adjusting the scenes within each dataset to fit within
a unit sphere, ensuring consistency across all data. We then divided the frame
data into 7:1 training and test sets. ENDONERF included 219 and 28 frames for
training and testing. SCARED included 2,434 and 307 frames for training and
testing. Due to the static endoscopic position, we randomly added perturbation
into the endoscope poses in ENDONERF. To evaluate the quality of rendered
RGB images based on this data, we used three standard metrics: PSNR, SSIM,
and LPIPS. Since this work was under the self-supervised learning strategy, the
experiments focused on the evaluation of 2D synthesized images.

Implementation Details We trained individual neural network models for
each scene. These networks have 8 layers with 256 channels each, including a
skip connection at the 4th layer. We utilized PyTorch [19] with the Adam opti-
mizer [11] with a learning rate of 0.0005, starting with a 5,000 iteration warm-up
before decaying at a rate of 0.05. Each training batch comprises 1,024 rays and
64 points per ray, with an initial standard deviation of 0.3. The loss function
weights are λ = 0.25, γ = 0.2, and δ = 0.001. The training runs for 100,000
iterations, taking 17 hours on an NVIDIA A100 GPU.

3.2 Comparison Evaluation

We re-trained all the models of approaches for each scene. We compared the pro-
posed method with existing NeRF-based methods [22, 26]. Table 1 showed the
quantitative results for the rendered RGB images based on three widely used
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metrics. As listed in Table 1, EndoSelf had better results compared to EndoN-
eRF [22] and EndoSurf [26] on each scene of ENDONERF [22] and SCARED [1].
And we calculate the average results for each dataset as shown in Table 1. Com-
paring to EndoSurf, EndoSelf produces better results than by ↑ 0.598 PSNR, ↑
0.001 SSIM, and ↑ 0.009 LPIPS on ENDONERF [22]. And EndoSelf had better
results by ↑ 0.434 PSNR, ↑ 0.007 SSIM, and ↑ 0.008 LPIPS on SCARED [1].
Note that EndoNeRF and EndoSurf are both depth-supervised approaches and
EndoSelf are trained under a self-supervised manner without depth value as
a supervised signal. Each method performs with high scores on ENDONERF
compared to the performance of results on SCARED. For ENDONERF, there is
very slight variation within each scene, making reaching a better view synthesis
easier. Hence, we adopted all 9 scenes in SCARED to provide more comparisons.
Fig. 3 also shows each method behaves similarly on ENDONERF for qualitative
results. However, SCARED includes Out-of-View Movement between adjacent
frames. Our method leverages temporal correlation based on the back-projection
process to provide more details (yellow arrow) and missing objects (white arrow).

3.3 Ablation Study

We performed the ablation study on other proposed components’ contribution to
the rendering in Table 2. The components involve Consistency on Photometric
Error (CPE); Consistency on Depth Value (CDV); and Looped Lose Function
(LLF). The ablation study reveals the performance became slightly worse when
converting the depth-supervised learning strategy to a self-supervised learning
strategy on ENDONERF [22] and SCARED [1] (IDs 1, 2, 3 and 4). However, the
whole proposed method outperformed better than the previous depth-supervised
approach (IDs 1 and 5). Each component contributes to the proposed method
(IDs 2, 3 and 4). Furthermore, the proposed method improves significantly when
combining each component (IDs 2, 3, 4 and 5).

Table 1. Quantitative comparison for renderer RGB images with three metrics on
ENDONERF and SCARED. The best performance is bold.

Methods EndoNeRF EndoSurf EndoSelf (Ours)
Metrics PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

cutting 34.242 0.932 0.151 34.896 0.952 0.107 35.439 0.953 0.103
ENDONERF pulling 34.188 0.938 0.160 34.917 0.955 0.121 35.651 0.958 0.112

Average 34.227 0.934 0.153 34.902 0.953 0.111 35.500 0.954 0.106
d1k1 24.669 0.768 0.351 24.666 0.777 0.340 25.031 0.781 0.336
d2k1 25.296 0.829 0.262 26.125 0.836 0.263 26.421 0.839 0.246
d3k1 19.858 0.619 0.466 21.593 0.682 0.417 22.084 0.689 0.412
d4k1 22.354 0.796 0.423 22.774 0.835 0.386 23.096 0.851 0.363

SCARED d5k1 22.429 0.806 0.385 23.089 0.865 0.296 23.514 0.870 0.311
d6k1 24.745 0.848 0.472 25.171 0.882 0.435 25.800 0.885 0.433
d7k1 23.221 0.840 0.299 24.686 0.886 0.247 25.332 0.890 0.248
d8k1 24.611 0.800 0.489 25.511 0.834 0.451 25.735 0.844 0.425
d9k1 22.080 0.633 0.518 22.382 0.658 0.472 22.771 0.662 0.472

Average 23.008 0.765 0.424 23.792 0.803 0.382 24.226 0.810 0.374
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Table 2. Evaluation for variants of the proposed model on ENDONERF and SCARED.
DS: Depth Supervision Signal ; CPE: Consistency on Photometric Error; CDV: Con-
sistency on Depth Value; LLF: Looped Lose Function. The best performance is bold.

ID DSS CPE CDV LLF ENDONERF SCARED
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

1 ✓ 34.902 0.953 0.111 23.792 0.803 0.382
2 ✓ 34.600 0.946 0.124 23.960 0.807 0.382
3 ✓ ✓ 34.681 0.947 0.124 24.026 0.808 0.380
4 ✓ ✓ 34.652 0.947 0.123 24.024 0.808 0.379
5 ✓ ✓ ✓ 35.500 0.954 0.106 24.226 0.810 0.374

4 Conclusions

This study proposes EndoSelf, a self-supervised approach based on neural fields
to reconstruct deforming surgical scenes from monocular endoscopic videos. Un-
like previous methods that relied on prior depth values as supervised signals,
Endoself overcomes the limitation of the prior depth value as one of the su-
pervised signals based on the back-projection geometry of photogrammetry. In
addition, we propose depth consistency and looped loss function to leverage the
temporal correlation between adjacent images fully. Experimental results on two
public datasets showed that our method outperformed previous methods. In the
future, we will utilize fewer posed images to complete the view synthesis and
reconstruction because collecting accurate poses is hard for endoscopic scenes.
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