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Abstract. As natural image understanding moves towards the pretrain-
finetune era, research in pathology imaging is concurrently evolving.
Despite the predominant focus on pretraining pathological foundation
models, how to adapt foundation models to downstream tasks is lit-
tle explored. For downstream adaptation, we propose the existence of
two domain gaps, i.e., the Foundation-Task Gap and the Task-Instance
Gap. To mitigate these gaps, we introduce PathoTune, a framework de-
signed to efficiently adapt pathological or even visual foundation models
to pathology-specific tasks via multi-modal prompt tuning. The proposed
framework leverages Task-specific Visual Prompts and Task-specific Tex-
tual Prompts to identify task-relevant features, along with Instance-
specific Visual Prompts for encoding single pathological image features.
Results across multiple datasets at both patch-level and WSI-level demon-
strate its superior performance over single-modality prompt tuning ap-
proaches. Significantly, PathoTune facilitates the direct adaptation of
natural visual foundation models to pathological tasks, drastically out-
performing pathological foundation models with simple linear probing.
The code is available at https://github.com/openmedlab/PathoDuet.
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1 Introduction

Pathological image diagnostics stands as a critical step that informs clinical
decisions by examining and interpreting stained images at the cellular level.
Computational pathology integrates machine learning techniques that promise
to revolutionize the approach to disease detection and analysis. In recent years,
many deep learning-based pathology diagnostic methods have been explored,
which can be categorized into patch-level [33, 32, 15] and WSI-level [30, 34, 22]
frameworks. However, these models need to be individually trained for specific
downstream tasks, e.g., training a separate model to recognize breast cancer or
Gleason grade of prostate, lacking in flexibility and generality.
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Fig. 1. Compared to traditional paradigms of training separate models for each task
or training a pathological foundation model, PathoTune directly adapts a visual or
pathological foundation model to downstream tasks using multi-modal prompts.

As the field of language processing and image analysis has transitioned into
the pretrain-finetune era, computational pathology has also entered the paradigm
of foundation models and efficient finetuning, where it is desirable to train a gen-
eralized foundation model that can solve all downstream tasks. Recent advances
have explored how self-supervised pretraining on large datasets can be used to
develop pathological foundation models, including CTransPath [31], HIPT [4],
Pathoduet [12], Virchow [29], etc. Despite these advancements, it is demon-
strated that even with pathological foundation models, satisfactory performance
cannot be achieved without finetuning [24]. While some works in the field of natu-
ral image analysis have explored the Parameter-Efficient Fine-Tuning (PEFT) [6,
20], how to effectively transfer the foundation models to downstream pathologi-
cal tasks has received little attention.

This paper argues for the importance of efficiently adapting a generalist foun-
dation model to downstream specialized models for pathological tasks. We pro-
pose that there exist two primary domain gaps in this process: the Foundation-
Task Gap (FTG) and the Task-Instance Gap (TIG). FTG refers to the domain
difference between the data encountered by the foundation model and the down-
stream pathological task or dataset, while TIG denotes the discrepancy between
a specific image and the average distribution of images in the dataset, e.g., varied
staining variations inherent to each pathological image.

To address these challenges, we introduce PathoTune, a framework that
employs multi-modal prompt tuning to adapt a foundation model for pathology-
specific tasks with a minor parameter increment. The foundation model can be
either a pretrained natural visual model or a pathological foundation model,
as shown in Fig. 1. PathoTune leverages Task-specific Visual Prompts (TVP)
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and Task-specific Textual Prompts (TTP) to bridge the FTG by encoding task-
related information. Additionally, it utilizes a Visual Refine Module to generate
Instance-specific Visual Prompts (IVP) for addressing the TIG. The results from
multiple datasets at both patch-level andWSI-level demonstrate that PathoTune
not only outperforms state-of-the-art (SOTA) PEFT methods relying on single-
modal prompts but also significantly exceeds elaborately pretrained pathological
foundation models with linear probing.

2 Related Work

Traditional Pathology Modeling. In digital pathology, identifying cancer
in Whole Slide Images (WSIs) poses a significant challenge due to their large
size. Xu et al. [32] leverages CNNs pretrained on ImageNet to extract features
from WSI patches for classification. To diagnose with WSI-level labels, Multi-
Instance Learning (MIL) is utilized in a series of works [30, 34, 8], integrating
CNNs with MIL for WSI classification. Additionally, Transformer models are
being investigated for a more integrated WSI analysis by feeding features from
numerous patches [23, 17]. Regardless of the backbone network, these methods
require either training from scratch or full finetuning on a pretrained model,
with a separate model needed for each specific task.

Pathological Foundation Model.With the emergence of foundation mod-
els in natural language processing [28, 3], computer vision [11, 10], etc., recent
studies have explored the development of pathological foundation models based
on self-supervised learning. Studies like Huang et al. [13] and Ciga et al. [7]
apply contrastive learning to pathological patches. CTransPath [31] enhances
the MoCo v3 framework with a pseudo positive selection mechanism to improve
similarity handling between patches. Pathoduet [12] builds on MoCo v3 with ad-
ditional pretraining tasks for cross-scale and cross-stain challenges. Large-scale
data utilization includes HIPT’s [4] hierarchical pyramid ViT pretraining on
10,678 WSI slides, UNI [5] employing 100,000 slides with the DINO v2 frame-
work, and Virchow [29] using 1.5 million slides.

Parameter-Efficient Fine-Tuning. PEFT has become a prominent and
efficient alternative in natural language processing [1, 20], offering accuracy com-
parable to full finetuning but with fewer parameters and reduced storage. In com-
puter vision, Adaptformer [6] finetunes visual adapters in foundation models for
diverse tasks. Prompt tuning [14, 27] emerges as an alternative, enabling task
transfer without altering the network’s structure. Jia et al. introduces VPT [14]
with learnable tokens as visual prompts, and Sohn et al. [26] proposes generat-
ing prompt tokens using a generator. VQT [27] utilizes “query”-only learnable
tokens for further parameter reduction. How to adapt the foundation model to
pathological downstream tasks is worth exploring as well.
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Fig. 2. Overview of the proposed PathoTune. (A) The input and output of PathoTune
for both patch-level and WSI-level tasks. (B) Detailed architecture of PathoTune, en-
compassing the Task-specific Visual Prompts (TVP), Task-specific Textual Prompts
(TTP) and Instance-specific Visual Prompts (IVP).

3 Methodology

3.1 Problem Formulation

Assuming that the data distribution of the natural image and the pathology im-
age is represented as F and D, respectively, the corresponding visual foundation
model and the ideal pathology model are represented as Φ(·) and Ψ(·). In the
adaptation of foundation models to downstream tasks, we identify the existence
of two domain gaps: the Foundation-Task Gap and the Task-Instance Gap.

– Foundation-Task Gap (FTG): The gap between the data domain F pre-
trained by the foundation model Φ(·) and downstream pathological domain
D, which is relevant to the specific task.

– Task-Instance Gap (TIG): Domain gap between each instance image in the
task-specific dataset and the dataset’s average data distribution, including
nuances such as staining and glandular structure variations.

In downstream adaptation, the FTG not only encompasses the discrepancy
between the natural image domain F and the pathology domain D, but also
reflects the significant divergence between the visual foundation model Φ(F ) and
the ideal pathology model Ψ(D). To bridge this gap, we propose the employment
of task-specific prompts Ptask, which are designed to adapt the visual foundation
model Φ(F ) to the pathology domain D, denoted as Φ(D;Ptask). The proposed
task-specific prompts Ptask are aimed at minimizing

min
P

∥Φ(D;Ptask)− Ψ(D)∥ . (1)

Particularly, the Φ(·) can be either a visual or a pathological foundation model.
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For each individual instance image x ∈ D within a pathological dataset,
the TIG is quantified as the variance σ(D), representing the dispersion of the
dataset’s distribution. To depict the specificity of the embedding of an instance
image Φ(x;Ptask) compared to the mean value Φ(x;Ptask), we introduce the
instance-specific prompts Pins which are designed to minimize

min
P

Ex∈D [∥Φ(x;Pins)− Ψ(x)∥] , (2)

where Ψ(x) denotes the embedding derived from feeding image x into the ideal
pathology model.

3.2 Multi-Modal Prompt Design

In response to the two domain gaps inherent in downstream pathological adap-
tation, the proposed PathoTune introduces three kinds of prompts, including
Task-specific Visual Prompts (TVP), Task-specific Textual Prompts (TTP), and
Instance-specific Visual Prompts (IVP). The TVP and TTP are designed as
task-specific prompts, with the purpose of relieving the Foundation-Task Gap.
Conversely, the IVP serves as the instance-specific prompts. From a modal per-
spective, both TVP and IVP are categorized as visual prompts, while TTP
operates as textual prompts. The complete pipeline as well as the inputs and
outputs of PathoTune are shown in Fig. 2.

Task-specific Visual Prompts. To mitigate the Foundation-Task Gap, it
is crucial to convey task-specific information to the foundation model. In this
context, we interpret the visual prompt explored in existing works [14, 27] as a
type of “soft” prompt with learnable task-specific information relevant to the
downstream pathological domain. Specifically, the Task-specific Visual Prompts
(TVP) introduces several learnable tokens into each layer of the Vision Trans-
former (ViT). For the ViT with L layers, let P l

TV P ∈ RN×C be the matrix of
learnable tokens at layer l, where N is the number of tokens and C is the token
dimension. The corresponding N TVP tokens P l

TV P are prepended to the patch
embedding El before being fed into the l-th layer.

Task-specific Textual Prompts. In addition to the “soft” visual prompts
that promote token self-learning, we consider textual descriptions as another
approach profiling the downstream pathological task and dataset. The proposed
Task-specific Textual Prompts (TTP) PTTP ∈ RT×C utilizes a text template
filled with specific stain (e.g., HE or IHC) and task information to generate text
embeddings, which are then aligned with other tokens through a frozen text
encoder θTE and a tunable text projection layer θTP . Assuming the text template
be Ptext = “A patch image showing {stain} pathology tissues for {task}”. The
text embedding for a given task is obtained as

PTTP = fTP (fTE(Ptext; θTE); θTP ) , (3)

where θTE and θTP are the parameters of the text encoder and the text projec-
tion layer, respectively. The text projection layer not only formalizes the feature
dimension, but also aligns the text features with flattened patches and prompts.
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Instance-specific Visual Prompts. The Instance-specific Visual Prompts
(IVP) PIV P ∈ RM×C targets the Task-Instance Gap (TIG) by capturing unique
characteristics of individual pathological instances. Specifically, we propose a
lightweight Visual Refine Module (VRM) fV RM to extract the specific staining
and glandular features relative to a single patch image. For a given instance
image x ∈ D, the VRM processes it into a coarse-grained embedding, which is
then replicated into M tokens, expressed as

PIV P = fV RM (x; θV RM ), (4)

where θV RM denotes the tunable parameters within the VRM. Different from
the TVP and TTP which have fixed tokens for a specific dataset, the IVP is
instance-wise, with tokens generated for each input image.

3.3 Overall Procedure

The proposed PathoTune appends the above three types of prompts to the input
of the ViT structure derived from the foundation model. Assuming that the
pathological image is flattened into K tokens, the embedding of the l-th layer is
expressed as El−1 ∈ RK×C . Thus, the first layer of ViT can be represented as

[V 1, E1] = Φ1
(
[V 0, P 0

TV P , PTTP , PIV P , E
0]
)
, (5)

where V l is the [CLS] token, and Φl(·) denotes the Transformer layer of the
l-th layer. Unlike the first layer which requires three types of tokens, subsequent
layers only need to replace the TVP tokens using P l−1

TV P , expressed as

[V l, El] = Φl
(
[V l−1, P l−1

TV P , E
l−1]

)
, (6)

where the last layer of the [CLS] token V L is fed into the tunable patch-level or
WSI-level head to classify pathological images. With the proposed prompts, we
can reuse the extensive knowledge embedded in the foundation model, requiring
only finetuning the prompts and the head for adaptation with a far lesser number
of trainable parameters. Additionally, compared to previous paradigms (Fig. 1
(A) and (B)) required to train a specialized pathology model Ψ(·) based on the
pathological datasetD, the proposed paradigm offers the support for a multitude
of tasks through a shared foundation model augmented by specialized prompts.

4 Experiments and Results

Datasets. We conduct a comprehensive evaluation of PathoTune across exten-
sive pathology datasets, including both public datasets, i.e., BCI [19], NCT [16],
SICAPv2 [25], and the private RJ-Prost dataset. These datasets span patch-
level (BCI, NCT) and WSI-level (SICAPv2, RJ-Prost) tasks, covering various
organs and staining types (HE and IHC). Among them, RJ-Prost is a propri-
etary dataset from an anonymous hospital focusing on prostate Gleason grading,
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Table 1. Ablation results (%) based on different foundation models on multiple
datasets, where “FT” stands for full finetuning and “LP” stands for linear probing.

Patch-level WSI-level
Prompts BCI-HE BCI-IHC NCT SICAPv2 RJ-ProstFound. Mode

TTP TVP IVP AUC F1 AUC F1 AUC F1 AUC F1 AUC F1
FT 94.2 76.0 97.0 85.4 99.8 95.3 94.2 74.9 96.8 77.2
LP 54.4 15.7 63.7 26.3 97.4 84.5 82.9 11.8 91.7 51.1

✓ 63.1 16.2 68.0 30.1 98.5 89.9 84.5 25.0 93.1 55.6
✓ 85.8 67.5 72.5 31.1 99.2 91.5 87.4 59.0 93.7 60.9

✓ 92.5 75.5 96.0 81.5 99.4 92.1 91.3 68.3 95.2 74.0

ImageNet
(ViT-S) Ours

✓ ✓ ✓ 93.2 76.1 97.3 84.3 99.7 92.4 94.3 74.8 96.8 76.4
FT 94.7 79.9 95.3 82.1 99.8 94.2 95.5 79.9 97.3 80.7
LP 53.1 14.5 61.5 29.0 98.4 84.9 86.5 46.9 92.5 54.7

✓ 58.2 15.8 65.5 31.0 98.9 90.2 87.3 55.3 93.5 58.8
✓ 59.2 15.7 67.9 32.2 99.1 91.3 89.8 64.9 94.1 67.4

✓ 92.8 72.7 90.1 65.1 99.6 92.4 92.9 72.5 96.3 74.8

HIPT
(ViT-S) Ours

✓ ✓ ✓ 93.4 75.4 96.8 82.8 99.8 94.0 95.4 79.3 97.0 80.5
FT 95.1 81.4 97.5 86.4 99.7 95.2 97.2 83.5 97.5 82.9
LP 64.2 18.5 69.0 36.5 98.6 89.8 95.3 73.5 93.9 56.8

✓ 65.1 20.0 71.2 33.4 98.9 90.0 95.8 81.0 94.8 65.9
✓ 66.5 21.2 75.9 32.9 99.4 90.6 96.7 82.3 95.2 70.3

✓ 93.5 77.0 97.0 83.7 99.7 91.9 97.0 82.5 96.1 78.3

ImageNet
(ViT-B) Ours

✓ ✓ ✓ 94.0 77.6 97.3 84.6 99.8 92.0 97.5 84.2 97.2 82.4
FT 98.7 89.7 99.0 92.5 99.7 94.9 97.3 84.5 97.8 83.0
LP 68.0 27.4 75.1 38.7 99.3 93.9 94.1 70.2 94.6 69.0

✓ 71.0 30.4 78.4 40.1 99.4 94.0 94.8 78.3 95.1 72.1
✓ 75.5 36.2 82.0 46.2 99.4 94.2 95.2 80.2 95.8 72.3

✓ 92.6 76.8 96.6 83.6 99.6 94.0 96.7 82.8 96.5 80.2

Pathoduet
(ViT-B) Ours

✓ ✓ ✓ 94.1 77.6 97.3 86.9 99.8 94.9 97.6 84.8 97.5 82.6

which includes 1,042 WSIs and four categories: negative, grade 3, grade 4, and
grade 5. The BCI dataset which contains both HE and IHC stains is divided into
“BCI-HE” and “BCI-IHC” for specific experiments. For dataset division, BCI
adheres to the official guideline, with identical validation and test sets. NCT fol-
lows the protocol established by Bian et al [2]. For remaining datasets without
standardized division protocols, we allocate data into training, validation, and
test sets in a 7:2:1 ratio. 4-fold cross-validation is applied to all except BCI.

Implementations. We transfer both visual foundation models (ViT pre-
trained on ImageNet) and pathological foundation models (HIPT [4] and Patho-
duet [12]) to each downstream dataset individually. HIPT employs ViT-S, while
Pathoduet utilizes ViT-B as the backbones for comparisons. The text encoder in
TTP leverages the pretrained BERT [9], while the VRM module in TVP initial-
izes with the first 4 layers of ResNet18. In most experiments, the token number
for TVP, TTP, and IVP is set at 10, 2, and 2, respectively, with a batch size of
32. We employ the RAdam [18] optimizer at a learning rate of 0.0002.

Effectiveness of PathoTune. The results of different foundation mod-
els using mixed combinations of prompts (Table 1) yield key insights: (1) Our
method significantly surpasses linear probing in all scenarios, closely rivals full
finetuning with just 5.9% of the trainable parameters (More details in supple-
mentary material). Furthermore, employing multi-modal prompts greatly en-
hances performance compared to single-modal usage. (2) The performance of
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Fig. 3. Comparisons of the PathoTune with other SOTA methods of PEFT.
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Fig. 4. Comparisons of the PathoTune with different prompt combination.

a useful downstream adaptation method (e.g., our PathoTune) based on the
natural visual foundation model far exceeds that of a poor downstream adap-
tation approach (e.g., linear probing) based on pathological foundation model,
suggesting that efficient downstream adaptation is even more important than
pretraining a pathological foundation model. (3) Transferring from a pathologi-
cal foundation model shows slightly better results than a visual foundation model
under the same backbone scale, indicating the optimal strategy originates from
a pathological foundation model paired with an effective finetuning approach.
(4) PathoTune can significantly enhance underperforming foundation models,
e.g., ImageNet (ViT-S), elevating their performance to rival that of specialized
models, e.g., Pathoduet (ViT-B).

Comparisons with SOTAs.We evaluate PathoTune’s performance against
SOTA methods including VPT [14], VQT [27], CITE [35], and PGN [21] across
various datasets, as depicted in Fig. 3. PathoTune consistently surpasses all com-
pared methods, regardless of whether it transfers from the visual or patholog-
ical foundation model. The results demonstrate the superiority of PathoTune’s
multi-modal prompts elaborated for domain gaps over these approaches using
single-modal prompts.

Impacts of prompt combination. We evaluate the performance of Patho-
Tune under different combinations of prompts adapted from ImageNet (ViT-S)
on the BCI dataset, with IVP and TTP taken as 0 respectively. As shown in
Fig. 4, using a combination of prompts yields better results than using a single
prompt, and IVP emerges as the most effective one.
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5 Conclusion

In this paper, we present PathoTune, an innovative framework designed to
adapt generalist foundation models to specialized pathological tasks through
multi-modal prompt tuning. By addressing the Foundation-Task Gap and the
Task-Instance Gap, we propose the Task-specific Visual Prompts, Task-specific
Textual Prompts, and Instance-specific Visual Prompts. PathoTune not only
surpasses SOTA methods but also remarkably outperforms pretrained patho-
logical foundation models using linear probing, providing a new paradigm for
computational pathology applications in the pretrain-finetune era.
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