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Abstract. Whole slide image (WSI) classification plays a crucial role
in digital pathology data analysis. However, the immense size of WSIs
and the absence of fine-grained sub-region labels pose significant chal-
lenges for accurate WSI classification. Typical classification-driven deep
learning methods often struggle to generate informative image represen-
tations, which can compromise the robustness of WSI classification. In
this study, we address this challenge by incorporating both discriminative
and contrastive learning techniques for WSI classification. Different from
the existing contrastive learning methods for WSI classification that pri-
marily rely on pseudo labels assigned to patches based on the WSI-level
labels, our approach takes a different route to directly focus on con-
structing positive and negative samples at the WSI-level. Specifically,
we select a subset of representative image patches to represent WSIs
and create positive and negative samples at the WSI-level, facilitating
effective learning of informative image features. Experimental results on
two datasets and ablation studies have demonstrated that our method
significantly improved the WSI classification performance compared to
state-of-the-art deep learning methods and enabled learning of informa-
tive features that promoted robustness of the WSI classification.

1 Introduction

Digital scans of pathology tissue slides, often referred to as whole slide images
(WSIs), provide rich information, such as tumor microenvironments, for cancer
diagnosis and treatment planning [1, 19]. While WSI classification plays an im-
portant role in addressing cancer diagnosis, it presents a significant challenge
due to the gigapixel size of WSIs and the absence of pixel-level annotations.

Deep learning methods for the WSI classification typically divide the huge
WSIs into image patches and integrate the image patches for classification in
a multi-instance learning framework at the WSI-level based on features ex-
tracted from the image patches [25, 5, 4, 14]. Promising WSI classification per-
formance has been achieved by deep learning methods with innovative graph
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Fig. 1. A comparison between image-level and patch-level contrastive learning, given
two WSIs from two different cancer classes, A and B, respectively. (a) for the patch-
level contrastive learning, positive and negative pairs of image patches are needed.
However, the absence of patch-level label information introduces potential noise in
both positive and negative pairs. (b) for the image-level contrastive learning, positive
and negative samples are defined based on the class label information of WSIs, and
such information is propagated to the image patches for enhancing feature learning
with our proposed method. By treating a set of patches as the basic unit, it allows to
learn more informative representations of WSIs, increasing the likelihood of capturing
cancerous regions. Regions affected by cancer are represented in green or red.

and Transformer-based architectures that facilitate effective feature learning and
patch integration for the WSI classification [6, 4, 22, 13, 31, 32]. Although these
classifier-driven methods demonstrate strong performance in classification, they
primarily rely on discriminative information to learn features and build classifi-
cation models, often overlooking the variations within and between classes [20,
29].

We aim to address this challenge and obtain compact and informative image
representations for accurate WSI classification through join discriminative and
contrastive learning. Contrastive learning is an effective method to learn compact
feature representations by minimizing feature distances between positive samples
while maximizing distances across negative samples. Existing contrastive learn-
ing methods for WSI classification can be broadly categorized into two types:
self-supervised learning and weakly supervised learning. In the self-supervised
methods, patches, along with their augmented or semantically similar counter-
parts, are regarded as positive samples while semantically dissimilar patches are
considered as negative samples [12, 28, 26, 30]. Despite the rich semantic informa-
tion obtained by these methods, they are limited in exploring pathology-related
discriminative information since the positive and negative samples are not tied
to WSI class information. In the weakly supervised learning methods, image-
level labels are utilized to assign pseudo class labels to patches for identifying
positive and negative patch pairs [27, 23, 2]. However, transferring the WSI-level
label information to image patches may introduce class label noise and yield
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Fig. 2. An overview of our DC-WSI method. Two WSIs are sampled from the train-
ing set to serve as examples. Given each WSI’s representation (i.e., a set of selected
patches), an encoder is applied to learn and extract patch features. The classification
(CLS) module aggregates intra-image features to predict class labels, and the con-
trastive learning (CL) module facilitates effective learning of informative features that
maximize intra-class similarity and minimize inter-class similarity.

degraded image representations. Taking the abnormal WSI images for example:
both normal and abnormal patches may coexist. Assigning abnormal pseudo la-
bels to normal patches can introduce extraneous noise in subsequent contrastive
learning.

To overcome the aforementioned limitations, we introduce a novel framework,
DC-WSI: Discriminative and Contrastive learning framework for Whole Slide
Image classification. Our approach employs both discriminative and contrastive
learning to obtain compact and robust image representation at both the patch-
and the WSI-levels for accurate WSI classification in an end-to-end multi-task
WSI classification framework. Specifically, our method employs attention mech-
anisms to aggregate patch features for making image classification predictions.
Our contrastive learning uses a set of patches to represent a WSI, with the WSI
class label (discriminative) information propagated to the image patches through
cross-attention, which facilitates effective learning of more robust representations
of the WSIs and improves the likelihood of detecting the abnormal patches of
WSIs (see Fig. 1). Such a contrastive learning strategy allows to aggregate patch
features of WSIs through cross-attention for characterizing similarities between
WSI images and encouraging feature learning to maximize intra-class similarity
and minimize inter-class similarity.

Our contributions are three-folds: 1) an effective discriminative and con-
trastive learning framework to learn compact and robust image representations
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for accurate WSI classification; 2) a new WSI-level contrastive learning method
with a set of patches to refrain from using patch-level pseudo labels and thus
mitigate the label noise in the learning process; and 3) a new patch selection
method that leverages the power of foundation models to select a subset of rep-
resentative patches, providing a comprehensive representation of WSIs.

2 Method

2.1 Problem Definition

Given a set of WSIs X = {Xn}Nn=1, which is split into two parts: training set
Xtrain = {Xi}Mi=1 and testing set Xtest = {Xj}Nj=M+1. Each training WSI Xi ∈
Xtrain has its binary image class label Yi ∈ {0, 1} representing normal/abnormal
or different disease types. Our goal is to predict class label Yj ∈ {0, 1} for each
test image Xj ∈ Xtest.

2.2 Method Overview

Our method is schematically illustrated in Fig. 2, consisting of two parts: Patch
Selection and DC-WSI Model. (1) Patch Selection: Selecting a subset of infor-
mative and representative patches to represent each of the WSIs to facilitate
computationally efficient WSI classification. Specifically, given a WSI Xi, we
divide it into m non-overlapping patches (m can vary for different WSIs). A
foundation model is then applied to encode each patch into a fixed dimensional
vector to capture the semantic information of the patch. All vectors within a
WSI are then input into a clustering method to group the patches into k clus-
ters. Subsequently, q patches are randomly selected from each cluster, forming
a set Pi = {pi,1, pi,2, ..., pi,b}, where b is the number of selected patches. Pi is
used for further training. (2) DC-WSI Model : We construct an end-to-end dual
discriminative and contrastive learning model to predict class labels of WSIs.
For the contrastive learning, we sample a pair of WSIs, X1, X2 ∈ Xtrain from
the training set. If they belong to the same class, their corresponding patch set
P1 and P2 are considered as a positive pair; otherwise, it is a negative pair.
An encoder is then applied to each patch pi,j , i ∈ {1, 2} to produce a fixed-
dimensional vector fi,j that captures disease-aware information. After encoding,
we transform patch set Pi into the encoding space Fi = {fi,j}bj=1. Subsequently,
a self-attention module aggregates features Fi to make a classification prediction
for Xi. Additionally, a contrastive learning module using cross-attention layers to
characterize similarity between X1 and X2 with a similarity score sim1,2, based
on their patch features F1 and F2. The contrastive learning loss is designed to
encourage positive samples to be similar to each other while pushing negative
samples apart.

2.3 Representative Patch Selection

We apply SAM [11] as the feature extractor to obtain patch features for sub-
sequent clustering. SAM is a robust foundation model capable of extracting
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dataset-agnostic semantic information. Specifically, we employ the SAM encoder
to transform patches into fixed-size one-dimensional vectors. Once all patch fea-
tures within a WSI are obtained, we apply the K-means clustering method [17]
to categorize the corresponding patches into k clusters. For each cluster, we
randomly sample q patches. The collection of selected patches form a patch set
Pi = {pi,1, pi,2, ..., pi,b}, where b <= m. Pi denotes a WSI Xi to be used for
feature learning and WSI classification.

2.4 DC-WSI Model

Encoder We employ ResNet18 [8] as an encoder backbone, excluding its last
three layers. Given a WSI with informative and representative patches Pi =
{pi,j}bj=1 ∈ Rb×h×w, where h×w is the patch size, it is used as an input to the
encoder for learning patch features: Fi = {fi,j}bj=1 ∈ Rb×h′×w′

, where h′ × w′

represents feature map size. These patch features are then flattened to produce
Fi = {fi,j}bj=1 ∈ Rb×d, where d = h′×w′. Fi is to be optimized through training
by minimizing a WSI classification loss and a contrastive learning loss in an
end-to-end training process.

Classification Module The classification (CLS) module aims to predict a class
label of Xi based on its patch features Fi. Specifically, following the setting of
ViT [7], we add a learnable class token C ∈ R1×d into the patch features Fi to
learn a set of features F ′

i = [Fi;C] ∈ R(b+1)×d. Then, F ′
i is fed into a Multi-head

Self-Attention module. Specifically, F ′
i goes through a multi-head attention [24]

layer, which yields query, key, and value vectors: Qi = F ′
i × WQ,Ki = F ′

i ×
WK , Vi = F ′

i × WV , where WQ,WK ,WV ∈ Rd×d are parameter matrices.
Finally, for each head j an attention output is computed as:

Aj
i = softmax(

Qj
i (K

j
i )

T

√
d

)× V j
i ∈ R(b+1)×d/h,

where Qi = [Q1
i , ..., Q

h
i ], K = [K1

i , ...,K
h
i ], V = [V 1

i , ..., V
h
i ], Qj

i , Kj
i , V j

i ∈
R(b+1)×d/h, i = 1, ..., h, and h is the number of heads.

The attention outputs from all heads are concatenated to form a feature
set Ai = [A1

i , ..., A
h
i ]. The class token C ′

i ∈ R1×d is taken from Ai and passed
through a linear layer to generate a prediction of the class probability, denoted as
qi ∈ R. The prediction is supervised by the image label Yi, and the classification
loss Lcls is computed as a binary cross-entropy loss:

Lcls(qi, Yi) = −
∑
i

(Yilogqi + (1− Yi)log(1− qi)).

Contrastive Learning Module The Contrastive Learning (CL) module op-
erates on pairs of images Xi and Xj with corresponding class labels of Yi and Yj

respectively, sampled from the training set Xtrain. The objective is to optimize
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Fig. 3. t-SNE visualization of image features (class tokens) of WSIs learned by (a) a
classification model (Lcls) and (b) a classification+contrastive model (Lcls + Lcc) on
TCGA-Lung test set. Different colors represent samples in different classes.

the image features by maximize intra-class similarity and minimize inter-class
similarity. Positive pairs contain images with the same class label, i.e., Yi = Yj ,
while negative pairs contain images from different classes. Specifically, for a pair
of images with features of Ai and Aj , a multi-head attention is used to ob-
tain cross-attention between them for computing their similarity, simi,j ∈ [0, 1],
between their class tokens Ci and Cj with a linear layer.

During each training iteration, Z pairs of images are sampled, with Z/2
are negative samples, and Z/2 are positive samples. The similarity scores of
all positive pairs are added to derive SIMpos, while the similarity scores of all
negative pairs are added to derive SIMneg. The contrastive learning loss Lcc is
calculated using the maximum-margin classification loss:

Lcc(
∑

SIMpos,
∑

SIMneg) = max(0, (
∑

SIMneg −
∑

SIMpos) +margin).

The final loss is the sum of the classification loss Lcls and the contrastive
learning loss Lcc. The model is trained end-to-end. During inference, only the
classification branch is utilized to predict class labels for input WSIs.

3 Experiments

We conduct experiments on two datasets: TCGA-Lung and TCGA-ESCA to
demonstrate the effectiveness of the proposed WSI-CL method. Additionally, we
perform ablation studies to demonstrate the effectiveness of key components in
our WSI-CL method.
Datasets 1) TCGA-Lung is a public dataset from National Cancer Institute
Data Portal [3]. It includes two types of lung cancer, i.e., Lung Squamous Cell
Carcinoma (TCGA-LUSC) and Lung Adenocarcinoma (TCGA-LUAD), includ-
ing a total of 1042 diagnostic WSIs with 512 TCGA-LUSC and 530 TCGA-
LUAD. Five-fold validation experiments were conducted.2) TCGA-ESCA is a
dataset from National Cancer Institute Data Portal [3], including a total of 149
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Table 1. WSI classification comparison results on TCGA-Lung and TCGA-ESCA
datasets. RS denotes random sampling, PS denotes proposed patch selection. The bold
score represents the best performance on the corresponding dataset.

TCGA-Lung TCGA-ESCA
Accuracy (%) ↑ AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑

ABMIL [9] 0.801 0.872 0.784 0.852
TransMIL [21] 0.871 0.939 0.820 0.902

GTP [33] 0.897 0.968 0.886 0.957
CLAM [15] 0.851 0.920 0.802 0.870

DC-WSI (RS+Lcls) 0.855 0.925 0.852 0.906
DC-WSI (PS+Lcls) 0.882 0.939 0.872 0.914

DC-WSI (PS+Lcls + Lcc) 0.903 0.958 0.926 0.959

diagnostic slides with 84 Squamous cell carcinoma (SCC) and 65 Adenocarci-
noma (AD). Five-fold validation experiments were conducted.
Evaluation Metrics We used the standard WSI classification evaluation met-
rics, including Accuracy and area under the curve (AUC ) score. Specifically,
Accuracy = TP+TN

TP+TN+FP+FN , where TP=True positive, TN=True negative,
FP=False positive, FN=False negative.
Implementation Details In our experimental setup, WSIs were partitioned
into patches of size 224x224 at 10X magnification. For the patch selection, we
used following parameters: k = 8 and q = 50. In the contrastive learning module,
we configured Z = 6. The learning rate was set to 0.0002, and the optimization
was performed using the Adam optimizer [10]. The model was implemented using
PyTorch [18].
Comparison Methods We compared our method with state-of-the-art (SOTA)
WSI classification methods, with results summarized in Table 1. Particularly,
ABMIL [9] is a multi instance learning (MIL) framework to aggregate instance
features through attention for final bag-level prediction; TransMIL [21] is a
Transformer based WSI classification framework to aggregate patch features by
attention mechanism; GTP [33] is a Transformer-Graph based WSI classifica-
tion framework with a patch-level contrastive learning to learn patch features;
and CLAM [15] is a clustering-constrained attention MIL approach with a patch
clustering loss to impose constraints and refine patch features in the WSI clas-
sification process.

3.1 WSI Classification Results and ablation studies

Table 1 shows WSI classification comparison results on TCGA-Lung and TCGA-
ESCA datasets. Firstly, our method (DC-WSI (PS+Lcls + Lcc)) obtained the
overall best WSI classification performance among all methods under compari-
son. Particularly, our method achieved substantial improvement on the TCGA-
ESCA dataset, with a 4.00% increase in Accuracy and a 0.2% increase in AUC
compared to the second-best method. On the TCGA-Lung dataset, our approach



8 et al

achieved a 0.6% increase in Accuracy over the second-best method. These re-
sults demonstrated the effectiveness of our method in extracting discriminative
features and aggregating them for accurate WSI classification predictions.

Secondly, ablation studies demonstrated the effectiveness of key components
of our method. DC-WSI (RS+Lcls) denotes the ablation study of representa-
tive patch selection in Section 2.3. Instead of using our proposed patch selection
strategy, DC-WSI (RS+Lcls) randomly selected the same amount of patches
with representative patch selection for further training. Particularly, the abla-
tion study results summarized in Table 1 showed that our patch selection strat-
egy DC-WSI (PS+Lcls) outperformed DC-WSI (RS+Lcls), indicating that our
patch selection strategy can capture more informative patches, leading to more
accurate WSI classification.

DC-WSI (PS+Lcls) denotes the contrastive learning ablation study. Instead
of using both discriminative and contrastive learning modules, DC-WSI (PS+Lcls)
only used the classification module with Lcls loss. The performance degradation
of DC-WSI (PS+Lcls) compared to DC-WSI (PS+Lcls+Lcc) demonstrated the
effectiveness of the contrastive learning component in improving the classifica-
tion performance.

Fig. 3 shows a t-SNE [16] visualization comparison of image representa-
tions (i.e., class tokens Ci) obtained from DC-WSI (PS+Lcls) and DC-WSI
(PS+Lcls+Lcc) models respectively, further demonstrating that the contrastive
learning module can help learn more informative features that maximized the
intra-class similarity and minimized the inter-class similarity, compared with the
classification model with the discriminative learning alone.

4 Conclusion

We develop a new discriminative and contrastive learning framework for WSI
classification. Experimental results on two WSIs datasets and ablation studies
have demonstrated that the proposed method can learn discriminative features
that improved WSI classification performance, maximized intra-class similar-
ity, and minimized inter-class similarity. Specifically, our method selects a sub-
set of informative and representative patches as the basic unit of WSIs, while
positive and negative samples are directly constructed at the WSI-level for the
contrastive learning. Moreover, utilization of a set of patches for the WSI classifi-
cation not only facilitates effective learning of robust features from the WSIs but
also improves classification performance. Our method can be further improved
by incorporating the patch selection in an end-to-end learning fashion, though
our current strategy offers the flexibility to use different clustering algorithms to
select representative patches.
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