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Abstract. Motion artifacts caused by prolonged acquisition time are a significant 
challenge in Magnetic Resonance Imaging (MRI), hindering accurate tissue 
segmentation. These artifacts appear as blurred images that mimic tissue-like 
appearances, making segmentation difficult. This study proposes a novel deep 
learning framework that demonstrates superior performance in both motion 
correction and robust brain tissue segmentation in the presence of artifacts. The 
core concept lies in a complementary process: a disentanglement learning 
network progressively removes artifacts, leading to cleaner images and 
consequently, more accurate segmentation by a jointly trained motion estimation 
and segmentation network. This network generates three outputs: a motion-
corrected image, a motion deformation map that identifies artifact-affected 
regions, and a brain tissue segmentation mask. This deformation serves as a 
guidance mechanism for the disentanglement process, aiding the model in 
recovering lost information or removing artificial structures introduced by the 
artifacts. Extensive in-vivo experiments on pediatric motion data demonstrate 
that our proposed framework outperforms state-of-the-art methods in segmenting 
motion-corrupted MRI scans. The code is available at https://github.com/SunYJ-
hxppy/Multi-Net. 
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1 Introduction 

Brain tissue segmentation plays a substantial role in medical image analysis. It serves 
to accurately identify and visualize important anatomical structures, enabling the 
diagnosis of diseases, especially neurodegenerative disorders such as Alzheimer's and 
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Parkinson's diseases [2]. It is also essential for studies on early infant brain development 
and quantitative tissue assessments [3]. Deep learning, particularly Convolutional 
Neural Networks (CNNs), has emerged as a powerful tool for brain tissue segmentation 
[4]. 
However, these segmentation methods encounter challenges when handling Magnetic 
Resonance (MR) images affected by motion artifacts, which are prevalent in clinical 
setting due to the prolonged data acquisition duration of MRI scans. This issue is further 
exacerbated in pediatric patients who struggle to remain still, resulting in increased 
motion artifacts during scans [5, 6]. As shown in Fig. 1, motion artifacts degrade image 
quality by the presence of ringing, blurring, and ghosting artifacts [7]. Consequently, 
this significantly hinders the precise analysis of MR image, particularly in estimating 
cortical gray matter volume and thickness when employing traditional segmentation 
methods [8]. Notably, the severity of motion artifacts directly correlates with the degree 
of degradation in segmentation performance. 
Addressing these artifacts in the volumetric data often requires additional MRI scans, 
leading to prolonged acquisition time, cost, and inconvenience for subjects. Even slight 
movements with a few millimeters can result in erroneous segmentation predictions [9]. 
Therefore, developing robust segmentation methods that handle motion-corrupted data 
remains a critical challenge.  
In this context, previous studies have addressed motion correction and segmentation, 
primarily focusing on non-rigid motion in cardiac [10, 11] or lung images [12]. 
Additionally, a study examined the impact of motion-artifacts on the quality of cortical 
reconstruction in brain MR images [13]. Researchers demonstrated that reconstructing 
the brain cortex after motion correction improves the quality of the reconstruction. 
However, this was not an end-to-end model; instead, segmentation was used solely to 
estimate their proposed motion-correction network. Furthermore, research has 
investigated segmentation methods that are robust to motion artifacts by utilizing 

Fig. 1. Segmentation masks generated by FreeSurfer [1] and U-Net on motion-free and 
motion-corrupted in-vivo data at two severity levels. Compared to clean data, motion artifacts 
cause blurring and structural variations, leading to imprecise segmentation masks. The Dice 
similarity coefficient (DSC) represents the average DSC within the White Matter (WM), Gray 
Matter (GM), and Cerebrospinal Fluid (CSF). 
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several types of images, including images affected by motion, those without motion, 
and images with different resolution [14, 15]. These approaches prioritized the 
utilization of large datasets rather than the development of new methodologies.  
In this paper, we propose a robust segmentation framework for motion artifacts, 
leveraging the prior knowledge of motion obtained through a jointly stitched motion 
estimation network. The proposed framework comprises three interconnected 
components: a disentanglement learning network, a segmentation network, and a 
motion estimation network. Our work presents four significant contributions. First, we 
develop a novel self-complementary network with a 2.5D disentangled dual-domain 
design. Second, we propose a motion-aware segmentation network by integrating it 
with a jointly stitched motion estimation network. Third, a motion deformation map is 
employed to maintain consistency between the disentangled artifact style and the 
anatomical structure of the brain. Finally, we validate the proposed method using in-
vivo pediatric motion data. 

2 Methods 

Our proposed model is trained in an end-to-end manner, integrating a motion correction 
disentanglement learning network with a joint motion estimation and segmentation 
network as illustrated in Fig. 2. 
For motion correction, the disentanglement learning separates motion artifacts from the 
underlying anatomical structure within the motion-corrupted image. This corrected 
image is then fed into the jointly stitched motion estimation and segmentation network, 
which leverages crucial artifact features for generating an accurate tissue segmentation 
mask.  
Given that our model is designed to perform three tasks simultaneously, we have chosen 
to use a 2.5D method to address challenges related to model complexity and resource 
requirements. 

Fig. 2. Overview framework of the proposed network. 
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2.1 Data Acquisition and Preprocessing 

In this study, we utilized 3D T1-weighted brain MRI scans from two sources: a private 
dataset containing unpaired pediatric scans, and a public dataset from OpenNeuro [16], 
which provided three types of paired data: motion-clean scans and two levels of motion-
corrupted scans. We used 2,847 axial slices for training and 608 axial slices for 
evaluation. Additionally, we included 955 slices of 2D motion-corrupted images from 
pediatric in-vivo motion artifact experiments. 
The public dataset was acquired using a 3T MRI scanner (MAGNETOM Prisma, 
SIEMENS, Germany) with the following parameters: echo time (TE) of 3ms, repetition 
time (TR) of 2300ms, flip angle of 9°, and field of view (FOV) of 256 × 256 [mm]. The 
private dataset was acquired using a 3T MRI scanner (MAGNETOM Skyra, 
SIEMENS, Germany) with the following parameters: TE of 2.3ms, TR of 2400ms, a 
flip angle of 8°, and FOV of 230 × 230 [mm]. The axial image resolution was 1 × 1 
[mm] for the public dataset and 0.7 × 0.7 [mm] for the private dataset. To achieve 
consistent resolution in both datasets, we applied preprocessing techniques to 
standardize the image size to 256 × 256 pixels.  
To generate datasets affected by motion, we utilized a motion simulator called 
View2DMotion [17]. These datasets were derived from a private collection that did not 
have paired motion-clean and motion-corrupted data. To utilize the entire brain volume 
as a 2.5D input, we extracted brain slices in an axial view and concatenated every three 
adjacent slices together. Subsequently, the datasets were resized to a uniform size of 3 
× 256 × 256. 

2.2 Disentanglement Network  

The disentanglement learning network is inspired from the UDDN architecture [18]. 
Further details regarding its implementation are provided in the following sections. 
 
Translational Mapping. Translational mapping process is the key component within 
the motion correction network. It aids in learning the invertible mapping between 
motion-corrupted and clean distributions during the training stage and is used to remove 
artifacts during the testing stage. For motion-corrupted image, two encoders were 
employed: 𝐸 (.) and 𝐸 (. )  were designed to extract structural and artifact 
components, respectively. For the clean image, 𝐸 (. )  was utilized, which was 
designed to extract only structural components.  
 

𝑠 = 𝐸 (𝑥 ), 𝑎 = 𝐸 (𝑥 ), 𝑠 = 𝐸 (𝑥 ) (1) 
 
After extracting the components, the artifact component 𝑎 was switched from being 
with the structural components 𝑠  of the artifact image to align with the structural 
components 𝑠  of the clean image. Following this, two decoders were introduced to 
generate new images, the motion corrupted image (𝑥 → ) and clean image (𝑥 → ). The 
clean images were reconstructed using only the structural component 𝑠  derived from 
artifact image. The artifact images were then reconstructed utilizing the structural 



Deformation-Aware Segmentation Network Robust to Motion Artifacts 

component 𝑠  from the clean image and the artifact component a from the artifact 
image. 

𝑥 → = 𝐷 (𝑠 ), 𝑥 → = 𝐷 (𝑠 , 𝑎) (2) 
 
Cycle-Translational Mapping. In cycle-translational mapping process, we redo the 
disentanglement, component switch, and image generation with the output of the 
translational mapping ( 𝑥 → ). We added cycle translational mapping to ensure 
consistency between images and stabilize the generation process. However, to reduce 
the computational cost and learning time, we performed the cycle translational mapping 
once, from the generated motion-corrupted image back to the clean image.  
The method of encoding and decoding is the same as the method used in the 
translational mapping.  

�̂� = 𝐸 (𝑥 → ), 𝑎 = 𝐸 (𝑥 → ) (3)  

𝑥 = 𝐷 (�̂� ) (4) 

Identical Mapping. Identical mapping serves as a reconstructive approach. By simply 
utilizing the components for generation without any interchange, it aids in preserving 
the original structure and content of the image. This process helps to assist in motivating 
the network to preserve the unaltered quality of the image.  

�̃� = 𝐸 (𝑥 ), 𝑎 = 𝐸 (𝑥 ), �̃� = 𝐸 (𝑥 ) (5) 

𝑥 = 𝐷 (�̃� , 𝑎), 𝑥 = 𝐷 (�̃� ) (6) 

2.3 Deformation-Aware Segmentation Network 

The deformation-aware segmentation network comprises an integrated framework of 
motion estimation and segmentation networks. 
 
Motion Estimation Network. For the motion estimation network, we derived our 
concept from the registration network [19]. Two datasets, labeled as source and target 

Fig. 3. Results of motion correction using OpenNeuro data with in-vivo motion. 
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are concatenated to serve as the input of the registration network. In our proposed 
method, registration model is utilized as a motion correction network, where motion-
corrupted data (𝑥 )  is defined as source data, and motion-corrected data (𝑥 → ) 
from the translational mapping as target data. 
Given that the network takes a pair of images as input, it learns the image features that 
captures the information of the Deformation Vector Field (DVF), representing 
displacements between a paired source and target images. Subsequently, the DVF and 
the source data are processed through the Spatial Transformer Network (STN) and 
warped to match the target data. In our network, we assume that the DVF exhibits a 
similar form to the motion artifact. 

𝐹 = 𝐸 (𝑥 , 𝑥 → ), 𝑥 = 𝐷 𝐹 (7) 

𝑥 = 𝑆𝑇𝑁 𝑥 , 𝑥 (8) 

Segmentation Network. For the brain tissue segmentation, we utilized an optimized 
nnUNet [20] as our backbone network for segmenting tissue into 4 classes: (0) 
background (BG), (1) cerebro-spinal fluid (CSF), (2) gray matter (GM), and (3) white 
matter (WM). However, the segmentation network itself can result in inaccurate 
estimations of brain structure due to the presence of motion-corrupted MRI [21].  
To develop a segmentation network that is robust to motion artifacts we incorporated 
an additional motion estimation network. This network aims to identify and 
differentiate motion artifacts during the segmentation process. By leveraging the 
concept of warping, we could generate motion deformation maps that help in correction 
of motion-corrupted images. This strategy not only offers insights into the extent of 
motion but also directs focus towards the impacted regions [22].  
To improve the segmentation performance by utilizing information from the motion 
estimation network, we adopted a Multi-Task Learning (MTL) approach [23]. This 
approach enables the networks to share critical information such as the magnitude 
values of motion artifacts and the affected regions. During training, the segmentation 
network learns to create the segmentation mask by exploiting the motion information. 
To amplify the efficacy of MTL, we integrate cross-stitch units. These units 

Fig. 4. Results of tissue segmentation using OpenNeuro data. The value represents the average 
DSC of GM and WM. 
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dynamically adjust the weights between the feature maps from each network during 
training, determining their significance and enhancing the inter-network correlation 
[24].  

3 Loss functions  

The adversarial loss functions are used to distinguish between real and generated 
images in the domain of translational mapping. The mathematical formulation is as 
follows: 

𝑥 → = 𝐷 (𝑠 ), 𝑥 → = 𝐷 (𝑠 , 𝑎) (9) 

ℒ (𝐷𝑖𝑠) =  
1

2
𝔼 ~ 1 − 𝐷𝑖𝑠 (𝑥 ) + 𝐷𝑖𝑠 (𝑥 → )

+
1

2
𝔼 ~ 1 − 𝐷𝑖𝑠 (𝑥 ) + 𝐷𝑖𝑠 (𝑥 → ) (10)

 

ℒ (𝐸, 𝐷) =  
1

2
𝔼 ~ 1 − 𝐷𝑖𝑠 (𝑥 → ) +

1

2
𝔼 ~ 1 − 𝐷𝑖𝑠 (𝑥 → ) (11) 

The term 𝐷𝑖𝑠(∙) refers to the discriminator, which serves to differentiate between (𝑥 , 
𝑥 → ) and (𝑥 , 𝑥 → ) respectively. 𝔼 ~  and 𝔼 ~  denote the operations of  
expectation on the distributions 𝐼  and 𝐼 , respectively. In terms of cycle consistency 
loss, we employed the mean absolute error (MAE) to quantify pixel-level loss and 
Multi-Scale Structural Similarity (MS-SSIM) index to measure structural level loss.  

ℒ = 𝔼 ~ ‖𝑥 − 𝑥 ‖ + 𝔼 ~ ‖𝑥 − 𝑥 ‖ (12) 

In the case of identical mapping, the output is the same as the input due to the absence 
of component exchange. The associated loss can be calculated as follows: 

ℒ =  𝔼 ~ ‖𝑥 − 𝑥 ‖ + 𝔼 ~ ‖𝑥 − 𝑥 ‖ (13) 

Fig. 5. Ablation study on different network framework. Our network is compared with a version 
without registration network. The value represents the average DSC of GM and WM.  
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Additional generation loss was addressed through an artifact loss, denoted as ℒ . We 
discovered that the generated correction output (𝑥 ) might seem plausible, but it may 
not precisely mimic the original image ( 𝑥 ) which contains the exact structural 
information. To counteract this issue, we devised a new loss function, ℒ . This was 
accomplished by computing the difference between the deformation map and the 
precise artifact shape, which is derived from subtracting the original input images 𝑥  
and 𝑥 . 

ℒ = 𝔼 ~ 𝑥 − 𝑥 ) − 𝑥 (14) 

This loss is predicated on the observation that the disparity between 𝑥  and 𝑥  should 
bear resemblance to the disparity between 𝑥  and 𝑥 . Because of the definition of 
deformation map, this disparity is the difference between the input images of the motion 
estimation network (𝑥 , 𝑥 ).  

Table 1. The quantitative assessment of segmentation and motion correction models consists of 
utilizing test datasets, which comprise both private and public datasets. 

 
For the motion estimation network, we employed L1 loss between 𝑥  and 𝑥 . By 
contrasting the difference between the original clean image and the output of STN, we 
succeeded in training the registration network. Moreover, while 𝑥  gradually 
becomes similar to 𝑥 → , it fundamentally provides constraint on the disentanglement 
learning process. 

4 Results and Discussion 

Fig. 3 and Fig. 4 illustrate a comparison of our proposed method against alternative 
models which are utilized for individual tasks. Highlighted by the yellow arrows in Fig. 
4, our proposed model is observed to precisely trace the boundaries of each brain tissue, 
classifying them with heightened accuracy. As noted in the introduction, estimating 
cortical thinning across the frontal and temporal cortex is crucial in diagnosing 

Region 
Evaluation of segmentation methods (DSC [%]) 

nnUNet UNETR Proposed 
CSF 57.66 ± 0.14 54.32 ± 0.12 59.13 ± 0.10 
GM 67.31 ± 0.13 64.25 ± 0.10 68.34 ± 0.10 
WM 79.84 ± 0.09 77.50 ± 0.08 80.25 ± 0.06 

Metrics Evaluation of motion correction methods 

 
Corrupted 

motion 
Pix2pix Cycle-GAN Proposed 

MS-SSIM 0.810 ± 0.05 0.875 ± 0.10 0.907 ± 0.04 0.918 ± 0.05 
PSNR 23.02 ± 3.06 22.71 ± 3.65 23.48 ± 2.60 26.30 ± 4.17 

MSE 0.010 ± 0.019 0.009 ± 0.014 0.005 ± 0.003 0.006 ± 0.003 
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Parkinson’s Disease [25]. Fig. 5, which includes an ablation study, provides evidence 
of the effectiveness of the registration network that was stitched together. It 
demonstrates that the registration network assisted the segmentation network in 
accurately identifying and segmenting the regions affected by the artifact. 
Table 1 presents the quantitative performance scores of our proposed model for both 
segmentation and motion correction on the in-vivo motion-corrupted images. The 
efficacy of including the artifact loss ( ℒ ) and the complementary role of the 
segmentation network are evident when compared to the base UDDN model, used 
solely for motion correction. The proposed artifact loss helps to effectively disentangles 
artifacts from structures, facilitating the generation of detailed motion-corrected images 
through the application of additional constraints. These refined images, subsequently 
utilized by our segmentation network, have yielded promising results. 
As per the results presented in Table 1, our proposed network outperforms other 
methods in terms of motion correction. However, the segmentation results were 
imperfect, which can be attributed to the low resolution of the generated motion-
corrected images compared to the original brain MR image. Therefore, future research 
should focus on generating high-resolution motion-corrected images to enhance the 
performance of the segmentation network. 

5 Conclusion  

In this paper, we proposed a novel motion correction and deformation aware 
segmentation network to generate motion corrected image and predict accurate brain 
tissue segmentation. Our method was evaluated on in-vivo motion-corrupted data and 
achieved superiority in motion correction and segmentation. 
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