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Abstract. Segmenting complex layer structures, including subcutaneous
fat, skeletal muscle, and bone in arm musculoskeletal ultrasound (MSKUS),
is vital for diagnosing and monitoring the progression of Breast-Cancer-
Related Lymphedema (BCRL). Nevertheless, previous researches pri-
marily focus on individual muscle or bone segmentation in MSKUS,
overlooking the intricate and hybrid-layer morphology that characterizes
these structures. To address this limitation, we propose a novel approach
called the hybrid structure-oriented Transformer (HSformer), which ef-
fectively captures hierarchical structures with diverse morphology in
MSKUS. Specifically, HSformer combines a hierarchical-consistency rel-
ative position encoding and a structure-biased constraint for hierarchical
structure attention. Our experiments on arm MSKUS datasets demon-
strate that HSformer achieves state-of-the-art performance in segmenting
subcutaneous fat, skeletal muscle and bone. The code of our implemen-
tation is available at:

Keywords: Arm Musculoskeletal US Segmentation · Hybrid and Hier-
archical Layer Structure · Horizontal and Curvilinear Morphology.

1 Introduction

Breast cancer-related lymphedema (BCRL) is a result of treatments for breast
cancer, such as surgery or radiation, which cause damage to the lymphatic ves-
sels. BCRL progresses from mild buildup of lymphatic fluid to irreversible edema
in the subcutaneous tissue and skeletal muscles, leading to noticeable morpho-
logical changes [13]. The thickness of the skin, subcutaneous tissue, and skeletal
muscles serve as significant biomarkers for diagnosing BCRL [5]. Traditional ap-
proach to assess BCRL using arm musculoskeletal ultrasound (MSKUS) involves
the manual delineation of tissue layers by experts, which is inefficient and has
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Fig. 1. Examples of arm MSKUS with a hybrid and hierarchical structure, including
horizontal layers paralleling to the skin surface and curvilinear layers.

limited adoption [18], [6]. Therefore, automatic synchronous segmentation of soft
tissues, skeletal muscle and bone structures is crucial for BCRL assessment.

Accurately segmenting arm MSKUS images for BCRL requires a more pro-
found comprehension of the unique structures due to complex and hybrid-layer
morphology. Specifically, on the one hand, tissue layers composed of distinct
components exhibit varied structural shapes. As shown in the lateral collection
(Figure 1(a)) and arm MSKUS images (Figure 1(b)-(c)), hierarchical layers such
as skin, subcutaneous fat, muscles and bones exist. The upper layers of soft tissue
are separated by horizontal or oriented echogenic lines, presenting parallel layers;
surface of the bone below displays horizontal boundaries or irregular curves [5].
The structural bias caused by the above morphology characteristics significantly
impact the segmentation performance, particularly ignoring the correlation and
differences between horizontal and curvilinear layers. On the other, BCRL also
emerges swelling of soft tissues and demonstrates partially curved boundaries in
the parallel layers, which is caused by the accumulation of liquid volume and even
the transformation into fibrous tissue, leading to tissue strain [20]. Therefore, un-
derstanding the hierarchical structures with diverse morphology in MSKUS is key
for segmenting subcutaneous fat, skeletal muscles and bones simultaneously.

Existing MSKUS segmentation studies currently exhibit two main focuses:
some emphasize muscle segmentation [14], [8], [7], aiming to quantitatively mea-
sure various parameters such as cross-sectional area and thickness, effectively
facilitating the diagnosis and follow-up of neuromuscular diseases. Others con-
centrate on bone segmentation [11], [24], [23], leveraging shape or anatomical
structure priors to enhance feature representation, promoting segmentation ap-
plications in scenarios like hip joints or spinal curvature. Nevertheless, the si-
multaneous segmentation of soft tissue (such as fat and muscle) and
bone structures in arm MSKUS [4] remains an area with limited re-
search findings. But the diagnosis of BCRL requires the segmentation of mul-
tiple layers of diverse tissue structures, in order to assess the thickness of the
skin, subcutaneous tissue, and skeletal muscles. Effectively leveraging the struc-
tural bias, including the parallel structures exhibited by soft tissues, the irregular
boundaries resulting from edema, and the curved structures on bone surfaces in
the Figure 1, is paramount for achieving accurate arm MSKUS segmentation.
Although segmentation frameworks for layer structures have been proposed [15],
[16], [19], they are primarily tailored to optical coherence tomography (OCT),
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which significantly differs from arm MSKUS and limits the application, particu-
larly when confronted with challenges such as soft tissue edema or deformations
on the bone surface caused by BCRL.

To effectively address the aforementioned challenges, we propose a novel hy-
brid structure-oriented Transformer (HSformer) for arm MSKUS segmentation.
This model captures effective feature representations for correlation and differ-
ences of the interlayer and intralayer structures from both horizontal and vertical
perspectives, simultaneously. To address the challenge of curvilinear structures
due to the inherent characteristics of the arm MSKUS and the effect of BCRL,
hierarchical-consistency relative position encoding (HCPE) imposes structure
bias onto the elements within the local window. Meanwhile, to amplify the dif-
ferences among layers and focus on critical features, a structure-biased constraint
(SBC) is designed to calculate attention weights. The contributions of our work
can be summarized as follows:

1) We propose a hybrid structure-oriented Transformer framework to simul-
taneously segment skin, subcutaneous fat, skeletal muscles, and bones, in which
the HCPE is designed to perceive and differentiate the structure features of hor-
izontal and curvilinear layers, and the SBC is offered to harness the learned
knowledge for boosting the representations.

2) Extensive experiments on arm MSKUS datasets justify the effectiveness of
our proposed method. It also exhibits good generalization to an in-house small-
scale MSKUS dataset.

2 Approach
The proposed HSformer explores an effective approach to represent hybrid struc-
tures that facilitates the differentiation of interlayer features and enhances re-
liance on intralayer characteristics for arm MSKUS segmentation. Figure 2 il-
lustrates the three main components of the HSformer framework: 1) a hybrid
structure-oriented Transformer block that extracts contextual features; 2) a
hierarchical-consistency position embedding (HCPE) method that incorporates
the bias of geometric morphology on the elements within vertical and horizontal
local windows; and 3) a structure-biased constraint (SBC), which is designed to
calculate attention weights and also compatible with HCPE.

Fig. 2. Illustration of the proposed HSformer framework.

2.1 Overall Architecture

The 7× 7 convolutional layer with stride 4 takes an arm MSKUS image xarm ∈
RH×W×3 as input and generates patch token embedding fembed ∈ RH

4 ×W
4 ×C ,
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where C = 64. There are four stages for a hierarchical representation in the HS-
former, and each stage has Ni sequential hybrid structure-oriented Transformer
blocks. In two consecutive stages, the network leverages a 3×3 convolution layer
with stride 2 to multiply the channel dimensions and reduce the number of to-
kens. Therefore, in the i-th stage, we acquire high-level feature maps with the
size of H

2i+1 × W
2i+1 × (2i−1)C, i = 1, 2, 3, 4.

The Hybrid Structure-Oriented Transformer Arm MSKUS reveals a com-
plex hybrid morphological structure, wherein soft tissues demonstrate structures
parallel to the skin surface, while tissues with a musculoskeletal surface or edema
have a curvilinear pattern. Horizontal or curvilinear structural features warrant
particular attention. Therefore, we encode the geometric structure (the layout
of each tissue) along the vertical direction and use horizontal strips in the lo-
cal windows to acquire attention weights HAtt ∈ RW×W , explicitly mining
interlayer distinctive features. At the same time, the feature distribution
within each layer is implicitly resolved along the horizontal direction in the lo-
cal window with vertical strips for scores V Att ∈ RH×H , aiming to reason
about intralayer information through contextual dependencies, espe-
cially for non-regular curvilinear structures. As shown in Figure 2, the
Transformer block incorporates attention weights from various orientations to
update the vanilla self-attention by using the structural characteristics of arm
MSKUS. These are not only suitable for complex hybrid morphology, but the
combination of the two window shapes also helps expand the attention region of
each token within the network, enabling more effective global self-attention.

Segmentation Head and Loss Functions The outputs of the Transformer
blocks are fed into a segmentation head to obtain fast inference results. The
segmentation head consists of a top-down branch in the form of a feature pyra-
mid, which includes three convolutional layers, followed by a batch normalization
layer and an activation layer. We employ the deep supervision strategy by adding
meta segmentation losses (the sum of cross-entropy loss and the dice loss).

2.2 Hybrid Structure-oriented Multi-head Self-attention with
Horizontal or Vertical Windows

Fig. 3. Illustration of the structure bias us-
ing local windows with horizontal strips.

In addition to extracting the global
features via local windows of various
shapes for achieving a balanced seg-
mentation between interlayer and in-
tralayer structures, we propose inte-
grating a hierarchical-consistency po-
sition encoding (HCPE) into the
QKT of self-attention, consideration
of the structure bias of layers when
extracting the local attention (where

Q and K represent the query and key matrices). Furthermore, we design a
structure-bias constraint (SBC) to calculate attention weights that is compati-
ble with HCPE.
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Fig. 4. (a) Acquisition of the horizontal HCPE. (b) SBC for attention weights calcula-
tion contains two steps: QiK

T
i +H(ϕi) is converted to the offset angle ∆θ by the green

arrow, representing the Normalization; the distances of the new converted point from
the benchmark point is calculated as HAtt, which is indicated by the blue line.

Structure Bias The 2D arm MSKUS plane is projected to a sphere image, and
each pixel location is represented by (θ, ϕ, ρ), where θ ∈ (0, 2π) , ϕ ∈ (0, π) , ρ = 1.
In Figure 3, both points L and R are situated within the muscle layer, charac-
terized by the light-yellow area. Despite they are quite spatially separated
in the MSKUS, their attention weights must remain consistent owing to the
underlying structural hierarchy. Fortunately, in the sphere image, the dis-
tance between L and R significantly narrows, thus reinforcing weight
consistency. This provides the inspiration for the HCPE and SBC techniques.

Hierarchical-consistency position embedding (HCPE) To better leverage
the abundant hierarchical relationships of arm MSKUS, HCPE is proposed to
impose structural morphology bias on the elements within each vertical and
horizontal local windows. Horizontal HCPE H(ϕi)m,n ∈ R1×1 is calculated by
measuring the distance between the m-th ϕm and the n-th elements ϕn in the i-th
horizontal window of Cartesian coordinates (as shown in the orange line in Figure
4(a)). Vertical HCPE H(θi)m,n ∈ R1×1 is calculated by measuring the distance
between the m-th θm and the n-th elements θn in the i-th vertical window of
Cartesian coordinates. Specifically, H(ϕi) ∈ RW×W and H(θi) ∈ RH×H for the
m-th and n-th elements of i-th window are defined as follows, separately:

Horizontal HCPE : H(ϕi)m,n = sign(θm−θn)·
√
2{1− cos(θm − θn)}·sin(ϕi)

(1)
Vertical HCPE : H(θi)m,n = sign(ϕm − ϕn) ·

√
2{1− cos(ϕm − ϕn)} (2)

where the sign(·) is a sign function used to distinguishes between H(ϕi)m,n and
H(ϕi)n,m, and we denote the sign of them as +1 and −1, respectively.

Unlike existing position embedding [3], [21], HCPE promotes to assign more
similar attention weights at spatial sampling points within the same tissue layer,
due to the structure bias in the Figure 3. Then HSformer can better comprehend
the curvilinear structures presented in edema or skeletal muscles surfaces.
Structure-Biased Constraint for Attention calculation (SBC) We fur-
ther design a SBC to calculate attention weights, which is compatible with
HCPE, as demonstrated in the Figure 4(b). In the polar coordinate, we need
to ensure H(θ, ϕ)m,n = −H(θ, ϕ)n,m. However, conventional softmax acting on
the terms within HCPE might generate inconsistent scores for the (m, n)-th and
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(n, m)-th elements, potentially leading to misguidance during the training of
HSformer [22]. In contrast, the SBC is symmetric, ensuring that HSformer pro-
duces consistent scores when combined with HCPE. This characteristic makes
SBC more suitable for capturing and modeling curvilinear structures.

Specifically, we first chose a spatial benchmark point (θ, ϕ, ρ) = (0, π
2 , 1) on

the sphere. For the interlayer features with horizontal windows, the elements in
QiK

T
i +H(ϕi) are converted to ∆θ by performing N{}· π2 . The new elements can

be located as
(
0 +∆θ, π

2 , 1
)

in the polar coordinate. Ultimately, we calculate the
distances between the benchmark point and the converted points as the attention
weights HAtti as follows:

Horizontal Attention : HAtti = {1−cos(N{QiK
T
i +H(ϕi)}·

π

2
)}·sin2(ϕ), ϕ =

π

2
(3)

Similarly, by transforming the QiK
T
i +H(θi) to ∆ϕ, the new intralayer structure

weights V Atti is defined as:

Vertical Attention : V Atti = 1− cos(N{QiK
T
i +H(θi)} ·

π

2
) (4)

Where N represents L1 normalization, and we directly utilize the square of the
distance as the attention weights, as a way to amplify the weight difference to
enhance the characterization of important regions.

3 Experiments

Materials. We used the public arm MSKUS dataset [4] to verify the proposed
HSformer. B-mode arm MSKUS contains different tissue layers, from top to
bottom: gel, skin, subcutaneous fat, skeletal muscle, and bone. It comprises 468
arm MSKUS images from 39 subjects, and all the images are resized into a
resolution of 224 × 224 for experiments. During training, we perform routine
data augmentation operations, such as random horizontal and vertical flips.
Implementation Details. In the proposed HSformer, the block numbers Ni of
each hybrid structure-oriented Transformer stage are separately 1, 2, 21, 1, the
head number of four stages is assigned to 2, 4, 8, 16, and the settings of other
parameters refer to [3]. HSformer is trained for 300 epochs and uses the Adam
optimizer with the initial learning rate of 0.0002 and a batch size of 6, and the
cosine learning rate scheduler with 30 epochs linear warm-up is leveraged. We
carry out a 5-fold cross-validation to evaluate the HSformer, and only record
the mean value. HSformer is implemented by PyTorch on one NVIDIA GeForce
RTX 3060. Dice coefficient (DSC), Jaccard Index (JI), Hausdorff Distance (HD)
and Average Surface Distance (ASD) are utilized as evaluation metrics.
Compared with Advanced Segmentation Approaches. Considering the
significant characteristics of arm MSKUS, we design comparative experiments
with three types: (1) representative image segmentation models, including UNet
[17], DeepLabV3 [2], TransUNet [1]; (2) recent MSKUS image segmentation
works, such as GSCNN [4] and AMCNet [23]; (3) outstanding layer-structure
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segmentation frameworks, involving TCCT [19] and CoherentSeg [10]. Table 1
and Figure 6 give the performance of the HSformer and seven advanced com-
peting methods. The results demonstrate that our model outperforms all other
methods consistently, as proved by higher DSC and JI on the five layers. Notably,
despite with medical segmentation networks [19], [10] being more focused on layer
structures or MSKUS images, the precision of the corresponding five-layer target
is still lower than HSformer. This suggests that understanding the hierarchical
layer structures with horizontal and curvilinear morphology can improve the
arm MSKUS segmentation performance with hybrid structural bias. Simultane-
ously, the lower HD and ASD indicate that HSformer provides highly accurate
boundaries and acquires effective feature representations by distinguishing and
exploring interlayer and intralayer structure relationships. Especially, the HD
and ASD of the bone structure are 7.39 and 1.122 lower than smallest values of
other models, indicating that HSformer accurately predicts curvilinear shapes.
Furthermore, we test on the recently popular SAM (Segment Anything) [9], and
the mean DSC and mean HD values of our HSformer are 0.13 higher and 14.00
lower than the SAM-based models, respectively. The qualitative and quantitative
results are demonstrated in the Figure A2 and Table A1 of the appendix.

Table 1. The comparison with other methods.

Representative
Segmentation Models

MKUS Image
Segmentation

Layer-Structure
Segmentation Ours

Layer
Structure Methods UNet DeepLabV3 TransUNet GSCNN

(TBME 2023)
AMCNet

(MICCAI 2023)
TCCT

(TMI 2023)
CoherentSeg
(MIA 2024) HSformer

DSC 0.9034 0.9337 0.9694 0.9494 0.9170 0.9368 0.9051 0.9752
JI 0.8258 0.8788 0.9447 0.9096 0.8531 0.8861 0.8319 0.9529
HD 2.3644 2.3639 2.3939 2.3418 2.5733 2.5272 2.4552 2.2727gel

ASD 0.5402 0.5180 0.5429 0.5210 0.5251 0.5517 0.4919 0.4795
DSC 0.7846 0.7925 0.8577 0.7903 0.7987 0.7976 0.7823 0.8722
JI 0.6602 0.6702 0.7629 0.6632 0.6749 0.6736 0.6549 0.7847
HD 3.8346 3.4749 2.8631 3.5666 3.4505 3.9399 3.9573 2.7669skin

ASD 1.2272 1.2235 1.0975 1.1818 1.1367 1.2596 1.225 1.0576
DSC 0.8349 0.8444 0.8318 0.8604 0.8680 0.8642 0.8356 0.9004
JI 0.7345 0.7506 0.7554 0.7711 0.7846 0.7742 0.7292 0.8299
HD 18.2158 16.0406 18.3368 15.6484 14.2870 16.5439 20.9985 13.2110

subcuta-
neous fat

ASD 4.1608 3.9346 4.4826 3.8932 3.486 4.2678 4.1733 3.1869
DSC 0.8081 0.8261 0.8441 0.8430 0.8524 0.8617 0.8090 0.8922
JI 0.7039 0.7295 0.7795 0.7572 0.7630 0.7651 0.6869 0.8134
HD 32.1766 30.5216 26.3134 26.2865 28.0218 25.8736 48.0643 25.0155muscles

ASD 6.8631 6.5158 6.8182 6.0242 5.3709 5.2882 8.9133 5.1583
DSC 0.7891 0.8011 0.8192 0.8149 0.8255 0.8458 0.7921 0.8873
JI 0.6934 0.7014 0.7522 0.7287 0.7339 0.7557 0.6751 0.8157
HD 34.149 30.0704 29.6025 28.4942 27.171 27.1545 47.1655 19.7612bones

ASD 6.7805 5.8932 6.2708 5.5064 5.0220 5.6406 8.2199 3.9000
DSC 0.8245 0.8455 0.8644 0.8516 0.8523 0.8612 0.8248 0.9055
JI 0.7239 0.7461 0.7957 0.7660 0.7619 0.7709 0.7156 0.8393
HD 17.9749 16.4943 15.9019 15.2675 15.1007 15.2078 24.5282 12.6054mean

ASD 3.8747 3.6170 3.6170 3.4253 3.1081 3.4016 4.6047 2.7564

Ablations. To evaluate the contributions of HCPE and SBC, we implement
four variants: (1) Ours w/o HCPE, where we discard the HCPE; (2) Ours w/o
SBC, where we utilize the softmax function to replace SBC and calculate the at-
tention weights; (3) Ours w LPE or RPE, where we replace HCPE with learnable
PE (LPE) [21] or relative PE (RPE) [12], as listed in Table 2. It reveals that,
when the HCPE was removed, the segmentation performance drops obviously,
especially on the skin, muscle and bone structure. Meanwhile, compared with
LPE and RPE, the HCPE both increases JI scores from 0.74, 0.73 to 0.82 for
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Fig. 5. The segmentation examples of four more remarkable models and Hsformer. To
provide a more comprehensive comparison with all models, we show the segmentation
results of all models corresponding to two cases in the Figure A1 of the appendix.

the representative curvilinear bone segmentation. It indicates that the HCPE
contributes substantially to explore the hybrid structure bias, and the SBC can
effectively produce more consistent attention weights than softmax function.

In-house Small-scale Arm MSKUS Test. To validate the generalization
of HSformer, we directly test 100 arm MSKUS images without model train-
ing, which were collected from Beijing Tsinghua Changgung Hospital using a
SonoScape E2 machine. While the public dataset uses Alpinion E-Cube 12 sys-
tem (Bothell, WA, USA) with L3-12H high-density linear probe for MSKUS
imaging. And anatomical structures of the MSKUS images from the two datasets
are consistent, with a large amount of speckle noise and shadow artifacts that
pose greater challenges to the segmentation task. For five-layer tissue structures,
we obtain the high mean DSC and low measn ASD of 0.82 and 5.31, as shown
in the Table 3. We also visualize the segmentation maps in Figure A3 of the
appendix. Although there are significant differences in image quality and style
between the two datasets, the proposed HSformer both achieves excellent per-
formance and demonstrates the strong generalization.

Table 2. Ablation results of the HSformer with four variants.

Layer
Structures gel skin subcutaneous fat muscles bones mean

variants DSC JI HD ASD DSC JI HD ASD DSC JI HD ASD DSC JI HD ASD DSC JI HD ASD DSC JI HD ASD
w/o HCPE 0.96 0.93 3.12 0.72 0.8 0.7315 4.00 1.30 0.87 0.79 15.51 3.77 0.84 0.75 27.36 6.43 0.81 0.72 32.45 6.41 0.86 0.79 16.49 3.73
w/o SBC 0.97 0.95 2.29 0.50 0.86 0.77 3.72 1.17 0.90 0.82 14.74 3.79 0.86 0.78 30.98 6.83 0.87 0.79 27.91 4.99 0.89 0.82 15.93 3.46
w LPE 0.97 0.94 3.79 0.77 0.84 0.75 3.59 1.21 0.87 0.80 13.34 3.15 0.86 0.78 26.59 6.19 0.83 0.74 30.14 6.04 0.87 0.80 15.49 3.47
w RPE 0.97 0.94 2.69 0.57 0.84 0.75 3.74 1.29 0.86 0.78 18.01 4.14 0.85 0.78 26.80 6.36 0.82 0.73 30.74 6.18 0.87 0.80 16.40 3.71

HSformer 0.98 0.95 2.27 0.48 0.87 0.78 2.77 1.06 0.90 0.83 13.21 3.19 0.89 0.81 25.02 5.16 0.89 0.82 19.76 3.90 0.91 0.84 12.61 2.76

Table 3. Performance for the In-house Small-scale Arm MSKUS Dateset.

gel skin subcuta-
neous fat muscles bones mean

DSC 0.95 0.74 0.72 0.77 0.93 0.82
JI 0.91 0.58 0.56 0.62 0.86 0.71
HD 4.00 4.52 39.53 39.36 27.41 22.95
ASD 1.21 1.81 7.46 11.36 4.71 5.31
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4 Conclusion

This paper introduces a novel hybrid structure-oriented Transformer for arm
MSKUS segmentation to aid for diagnosis and screening BCRL. To address the
challenge of the hierarchical structures with diverse morphology in MSKUS, HS-
former employs horizontal and vertical local windows to capture optimal feature
representations. Particularly, HSformer designs a HCPE to impose structural
bias onto the elements within local window, and a SBC to calculate attention
weights and is more suitable for horizontal or curvilinear hybrid structures. The
empirical experiments demonstrate that the HSformer outperforms existing seg-
mentation models and has good generalization for arm MSKUS segmentation.
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