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Abstract. Reconstructing the 3D anatomical structures of the oral cav-
ity, which originally reside in the cone-beam CT (CBCT), from a single
2D Panoramic X-ray(PX) remains a critical yet challenging task, as it
can effectively reduce radiation risks and treatment costs during the di-
agnostic in digital dentistry. However, current methods are either error-
prone or only trained/evaluated on small-scale datasets (less than 50
cases), resulting in compromised trustworthiness. In this paper, we pro-
pose PX2Tooth, a novel approach to reconstruct 3D teeth using a single
PX image with a two-stage framework. First, we design the PXSegNet
to segment the permanent teeth from the PX images, providing clear
positional, morphological, and categorical information for each tooth.
Subsequently, we design a novel tooth generation network (TGNet) that
learns to transform random point clouds into 3D teeth. TGNet inte-
grates the segmented patch information and introduces a Prior Fusion
Module (PFM) to enhance the generation quality, especially in the root
apex region. Moreover, we construct a dataset comprising 499 pairs of
CBCT and Panoramic X-rays. Extensive experiments demonstrate that
PX2Tooth can achieve an Intersection over Union (IoU) of 0.793, signif-
icantly surpassing previous methods, underscoring the great potential of
artificial intelligence in digital dentistry.
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1 Introduction

Cone-Beam Computed Tomography (CBCT) [17] provides detailed volumetric
three-dimensional information of anatomical structures, playing a critical role
in dental treatment such as implanting and orthodontics [24]. Despite its ad-
vantages, CBCT involves a certain amount of radiation doses and costs, which
impedes its utility in the real world. In contrast, Panoramic X-ray (PX) images,
characterized by the low radiation exposure and cost-effective capture [25], al-
low patients to undergo subsequent treatment without CBCT in many clinical
⋆⋆ Part of this work was done when Wen Ma was an intern at ChohoTech.
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scenarios, reducing both radiation exposure and economic burden [23]. Further-
more, PX imaging significantly enhances the efficiency of dental practices, both
in preoperative and postoperative phases [18], marking a substantial leap to-
ward digitalization in dentistry [19]. This shift improves access to diagnostic and

Fig. 1. Generation quality illustration on a single tooth. PX2Tooth (ours) generates
more accurate meshes representing tooth shapes, with significant improvements in the
root tip area and the smoothness of the mesh surface.

treatment options for a wider patient base. Nevertheless, while PX images pro-
vide 2D information about the oral cavity, they fall short in providing adequate
3D information regarding tooth volumes and spatial positioning, representing
considerable difficulties yet holding substantial potential for advancing dental
care [16].

Recent research has launched attempts to reconstruct the 3D anatomical
structures, such as teeth, in CBCT from the 2D PX images. These approaches
fall into two categories. The first line of work reconstructed 3D teeth by aug-
menting PX images with additional labeling data, such as tooth landmarks or
photographs of tooth crowns [25]. For instance, [7] developed a model that uti-
lized tooth landmarks identified in PX images to predict tooth shapes. Simi-
larly, [11] reconstructed an individual tooth by employing a shape prior and
a reflectivity model derived from the corresponding crown photograph. These
methods necessitate substantial time and effort from professional dentists for
annotations, resulting in a slow, costly, and resource-intensive process. Another
line of methods reconstructs 3D teeth only with a single PX image. For instance,
existing works first segment the 2D teeth and subsequently employ generative
networks such as GANs to reconstruct the 3D tooth structures [10, 14, 6] Recent
work also introduces a framework for 3D tooth reconstruction from PX images
using a neural implicit function [12].

Nevertheless, there remain significant challenges for 3D tooth reconstruction
from 2D PX images. First, the accuracy achieved by existing methods is still
unsatisfactory to meet the requirements for clinical dental applications. Specif-
ically, the detailed features in the root and the apex region of the tooth are
inaccurate or inadequate. Moreover, these methods have only been validated on
small datasets (comprising only 23-37 cases), while a large-scale dataset for more
convincing evaluation is yet under development.

To address the aforementioned challenges, we introduce a novel method
PX2Tooth which generates 3D point cloud teeth from single 2D PX images,
eliminating the need for extra labeling while ensuring high precision. PX2Tooth
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works in a two-stage manner. First, we design a PXSegNet model to segment
PX images into 32 permanent tooth categories, ensuring accurate morphological
and categorical information for each tooth. The position and shape information
of individual teeth are subsequently employed during the reconstruction process.

Afterwards, we design a 3D tooth generation network TGNet, which trans-
forms any 3D random point clouds to the desired teeth. The segmentation out-
puts from PXSegNet are treated as prior information, which is further integrated
to guide the generation of TGNet with a Prior Fusion Module (PFM). Such prior
information can help improve the generation quality, especially for the tooth root
and tip areas. We also employ tailored segmentation, as well as reconstruction
loss, functions to train PXSegNet and TGNet.

We evaluate the performance of our method with CBCT samples and cor-
responding generated PX images following existing works [10, 6]. To ensure re-
liable assessment, we construct a dataset with 499 CBCT cases, which is one
order of magnitude larger than existing datasets. Our experimental results show
that PX2Tooth achieved a reconstruction Intersection over Union (IoU) of 0.793,
which significantly surpasses existing state-of-the-art methods, as illustrated in
Fig 1. Extensive analysis and ablation studies further reveal the effectiveness of
our method, suggesting the great potential of AI in future digital dentistry.

2 Methods

PX2Tooth sequentially consists of two key components: the panoramic X-ray seg-
mentation network (PXSegNet) and the Generative 3D tooth reconstruction net-
work (TGNet). Based on the accurate and detailed information on the clear posi-
tion and shape of each tooth obtained during the segmentation stage by PXSeg-
Net, TGNet is capable of generating high-precision and smoothly contoured 3D
point cloud representations of teeth. The overall architecture of PX2Tooth is
shown in Fig. 2.

2.1 2D Tooth Segmentation

PXSegNet. Using the entire PX image without segmentation to generate all
3D teeth would lead to clearer positional relationships among teeth, resulting
in a more complicated reconstruction network, higher computational costs, or
inferior accuracy.

Therefore, we propose PXSegNet, a Panoramic Segmentation Net that em-
ploys detailed segmentation technology to classify teeth within input PX images
into 32 distinct categories aligned with the conventional FDI tooth numbering
system, as illustrated in Fig. ??, thereby achieving precise dental modeling.

Given the potential for overlapping of adjacent teeth in the PX image, we
accurately describe the 2D tooth segmentation as a multi-label segmentation
problem [20]. The model takes an input PX image of size H×W. The segmen-
tation output is of dimensions C×H×W, where the channel dimension C = 33
signifies the number of tooth classes: one for the background and 32 for individual
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Fig. 2. Pipeline of our PX2Tooth. (a) PXSegNet segments PX images into 32 teeth.
The feature information and tooth categories of segmented patches are integrated into
the initial point clouds. (b) TGNet generates individual teeth from the fused input
points. A Prior Fusion Module(PFM) to provide more spatial morphological informa-
tion for improved generation quality. Finally, the 3D registration matrix is used to
restore the position of each tooth and obtain a real dental model.

teeth, akin to the approach in [9]. Consequently, the H×W output at each chan-
nel represents the segmentation output for each tooth class. These segmentation
outputs are crucial in generating tooth patches for subsequent reconstruction,
as elaborated upon in detail later. The PXSegNet architecture can be seen in
Fig. ??(a), we leverage the effectiveness of UNet [12] as the foundational model.
The notable advantage of UNet lies in its U-shaped structure, making it highly
adept at accurate segmentation of medical images [22].

To enhance the precision of segmenting small target teeth, our methodology
integrates a dual-loss strategy, encompassing Metric Boundary (MB) Loss and
Unbalanced (UB) Loss. UB Loss excels in dealing with the global structure of
the image and by introducing a factor γ to prioritize challenging-to-segment
samples, which helps solve the overall category imbalance. MB Loss calculates
the intersection ratio of two sets to focus on the local similarity at the pixel level,
which can improve the precision of segmenting the boundary of a single tooth.

Therefore, our method can effectively leverage their respective strengths to
enhance overall accuracy. The MB Loss and the UB Loss are defined as:

MB Loss = 1− 1

C

C∑
c=1

2
∑N

i=1 yi,cpi,c∑N
i=1 yi,c +

∑N
i=1 pi,c

, (1)

UB Loss = − 1

N

N∑
i=1

C∑
j=1

yi,j (1− pi,j)
γ
log (pi,j) , (2)
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where C represents The number of teeth classes in the classification problem, and
N denotes the number of samples or instances in the dataset. p is the predicted
probability. y represents The ground truth (GT) label.

2.2 3D Tooth Reconstruction

TGNet. We introduced a novel point cloud Teeth Generative Net(TGNet) for
3D teeth reconstruction inspired by PointNet [13]. TGNet exhibits enhanced con-
ciseness and flexibility in generating 3D point clouds from a PX image network.
Based on PointNet, we enrich the input information, which includes segmented
tooth patches, tooth categories, and initialized point clouds. Our approach aims
to alter the output to generate the point cloud that accurately represents the
position and fine shape of the teeth.

Furthermore, we tailored a reconstruction loss to better suit the new gener-
ation task of TGNet, as opposed to the default loss used in PointNet, which is
more aligned with segmentation or classification algorithms.

The Reconstruction Loss (RT Loss) measures the similarity between the pre-
dicted and ground truth point clouds,

which is defined as:

RT Loss(A,B) =

m∑
i=1

n
min
j=1

∥Ai −Bj∥2 +
n∑

j=1

m
min
i=1

∥Bj −Ai∥2, (3)

Where B and A denote the predicted point cloud of m points and the ground
truth (GT) point cloud of n points, respectively.

Prior Fusion Module. To enhance the matching degree of the generated tooth
apex and improve the uniform distribution of the generated point cloud, we pro-
pose a novel Prior Fusion Module (PFM). PFM integrates 3D features with 2D
features to enhance the accuracy of the tooth tip(Fig.3B). The PFM utilizes the
point cloud information (Q) as queries while employing the image information
(K and V) as keys and values, respectively. Here, K and V represent the spa-
tial information of individual teeth images and their high-dimensional feature
information obtained in the segmentation process.

The PFM mechanism enhances model focus on individual point cloud ele-
ments by linking them to corresponding image elements, enriching morphological
and spatial representations. This module efficiently utilizes both point cloud and
image data to refine the alignment of spatial and morphological features across
modalities.

3 Experiments

Dataset. We constructed a dataset containing 499 cases, enabling a robust and
reliable evaluation that is approximately 20-fold larger than existing datasets in
the field.
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Fig. 3. Visualization of reconstruction outputs. (a) overall comparison with baselines.
(b) illustration of the ablation experiment.

Firstly, we collected 499 CBCT scans from various orthodontic patients. The
3D images were resampled to the actual size of real teeth based on their re-
spective spacing scales [24]. Then, to obtain precise 3D tooth label information,
a meticulous effort was made by professional dentists to classify and finely an-
notate the 3D structure of individual teeth according to tooth numbers for all
499 CBCT scans. Subsequently, we employed the approach outlined by Yun et
al. [15] to construct our Panoramic X-rays dataset, projecting 3D images into 2D
Panoramic X-rays at a 1:1 ratio. Using the same method, we also obtained la-
bels for the Panoramic X-rays. Finally, we partitioned the dataset into training,
validation, and test sets in an 8:1:1 ratio.

Implementation Details. In the implementation of PXSegNet, each PX image
undergoes processing with two 3x3 convolutions (unpadded), followed by ReLU
activations and 2x2 max pooling for downsampling, doubling feature channels
at each step. The expansive path features feature map upsampling, 2x2 up-
convolutions halving feature channels, and integration with cropped maps from
the contracting path plus two subsequent 3x3 convolutions with ReLU. TGNet
utilizes MLPs with 1D Convolutions of 64, 128, and 1024 channels, each followed
by a ReLU. PX2Tooth, trained on dual NVIDIA GeForce RTX 3090 GPUs using
Adam optimizer, handles end-to-end network training with a minibatch size of 2,
targeting the generation of approximately 30 teeth per PX image. Training starts
with a learning rate of 1e-5, adjusted down by 0.7 every 10 epochs. Our method
is cost-effective, training on a single RTX 3090 for 56.23 hours with 0.692 GB
VRAM and 103.94 million parameters. It infers 32 teeth in 6.03 seconds, making
it highly efficient for medical center deployment.
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Baseline Models. We considered several state-of-the-art models as baselines,
including 3D-R2N2 [3], PSGN [5], Pix2mesh [11], Occupancy Networks (Occ-
Net) [8], Occudent Model [2], and X2Teeth [6].

The X2Teeth proposed the earliest solutions to generate 3D teeth from a
single panoramic X-ray, offering a simple and straightforward groundwork for
subsequent work. Building on the X2Teeth, the Occudent method employs neural
implicit functions to evaluate if a given point in 3D space is within the tooth
structure, thus implicitly delineating the contours of the tooth’s 3D shape.

Additionally, the 3D-R2N2, PSGN, and Pix2mesh belong to general 3D gen-
eration techniques designed for widely-used 3D datasets [14].

Main Results. Table 1 demonstrates PX2Tooth’s superiority over baselines
in all metrics. Voxel-based models like 3D-R2N2 and X2Teeth capture the oral
cavity’s overall shape but miss detailed tooth complexities, highlighting the chal-
lenge of converting PX images into 3D structures. Unlike traditional encoder-
decoder methods (X2Teeth, Pix2mesh, PSGN), TGNet excels in processing un-
ordered point clouds. Conversely, OccNet and Occudent, which convert point
clouds into discrete occupancy grids, face potential information loss and lower
accuracy, showcasing TGNet’s advantage in preserving detail and accuracy.

Table 1. Comparison with baselines. (↓): the lower the better, ( ↑ ) : the higher the
better. MMD-CD and MMD-EMD scores are multiplied by 100 and 10, respectively.

Method IoU ( ↑ ) MMD - CD (↓) ( MMD - EMD ↓)
3D-R2N2 0.549±0.004 2.037±0.006 2.357±0.005
PSGN 0.612±0.005 1.383±0.009 2.441±0.004
Pix2mesh 0.642±0.005 1.250±0.008 1.535±0.005
X2Teeth 0.636±0.015 0.792±0.003 1.649±0.006
OccNet 0.651±0.004 0.802±0.005 1.317±0.008
Occudent 0.681±0.004 0.671±0.004 1.232±0.007
PX2Tooth(Ours) 0.793±0.004 0.424±0.005 0.997±0.006

Table 2. Ablation experiment comparison. (↓): the lower the better, ( ↑ ) : the higher
the better. MMD-CD scores are multiplied by 100.

Method IoU ( ↑ ) MMD - CD (↓)
Unet [12] + PointNet [13] 0.63±0.004 1.383±0.009
Unet + MB Loss + PointNet 0.661±0.005 1.250±0.008
Unet + UB Loss + PointNet 0.659±0.003 1.290±0.008
PXSegNet + PointNet 0.692±0.005 1.112±0.008
PXSegNet + PointNet + RT Loss 0.736±0.015 0.792±0.003
PXSegNet + PointNet + PFM 0.744±0.004 0.802±0.005
PX2Tooth(Ours) 0.793±0.004 0.424±0.005

Ablations. Visualization in Fig. 3 (b) showcases the impact of sequentially in-
corporating MB loss, UB loss, RT loss, and PFM on our model’s performance.
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Table 3. Teeth level analysis. Average IoU statistics of each category of teeth according
to FDI tooth number. Baseline refers to Unet + PointNet.

Method 11 12 13 14 15 16 17 21 22 23 24 25 26 27
Baseline 0.65 0.63 0.67 0.62 0.67 0.60 0.66 0.59 0.61 0.65 0.61 0.69 0.59 0.65
PX2Tooth 0.78 0.78 0.84 0.77 0.83 0.74 0.91 0.78 0.77 0.81 0.76 0.84 0.72 0.84
Method 31 32 33 34 35 36 37 41 42 43 44 45 46 47
Baseline 0.62 0.65 0.63 0.61 0.63 0.58 0.67 0.61 0.63 0.59 0.62 0.64 0.58 0.69
PX2Tooth 0.83 0.86 0.81 0.77 0.80 0.75 0.86 0.77 0.83 0.78 0.80 0.79 0.75 0.85

Table 2 details our ablation study results, highlighting the contribution of each
component. Introducing MB Loss alone led to a 3.1% increase in IoU while in-
corporating UB Loss independently resulted in a 2.9% improvement. Adding
RT Loss atop MB and UB Losses further boosted performance by 4.4%. In-
cluding the PFM module on this foundation, our final performance surged by
an additional 5.7%, reaching a peak IoU of 79.3%. These results underline the
effectiveness of the components proposed in our method.

Tooth Level Analysis. Table 3 highlights the performance of individual tooth
classes in our method, revealing that teeth numbers 17, 27, 37, and 47 excel in
reconstruction due to advantageous positioning and feature richness, as shown
in Fig. 4 (a). Teeth 15, 25, and 35 also show significant improvement, benefitting
from their unique shapes. However, teeth 16, 26, 36, and 46 face minor challenges
in achieving ideal outcomes, as depicted in Fig. 4 (b).

Fig. 4. FDI shows the position of each tooth corresponding to the oral cavity, (a) shows
the visualization problem of teeth that are not satisfactory enough (lack of root tip
information). (b) shows the category tooth visualization with excellent average high
IoU performance.

Visualization. Fig. 3 (a) demonstrates the effectiveness of our method in pro-
ducing 3D teeth meshes closely resembling the ground truth, outperforming
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voxel-based methods like X2Teeth and 3D-R2N2, which lose root and spatial
detail and suffer from missing teeth. While Occudent improves on positional
accuracy, it misrepresents tooth roots and sizes. In contrast, our approach accu-
rately reconstructs detailed shapes and positions for various tooth types.

Limitation on Clinical Validation. Current methods primarily focus on
teeth, whereas CBCT images encompass broader anatomical details such as the
jawbone and nerve canals, areas which our method has not yet been validated to
accurately capture. Furthermore, the clinical applicability of translating findings
from 2D X-rays to 3D CBCT scans, especially in complex cases, remains to be
validated. These challenges highlight the need for further research to ensure the
robustness and generalizability of our approach across diverse clinical scenarios.

4 Conclusion and Future Work

In the paper, we proposed PX2Tooth, an end-to-end framework that accurately
transforms 2D PX images into 3D tooth point clouds, bypassing the need for
extra labeling. Leveraging a two-step strategy, PXSegNet segments teeth with
detailed positional data, while TGNet, enhanced by a Prior Fusion Module
(PFM), efficiently generates 3D teeth. We established a large-scale dataset with
499 CBCT and PX pairs to ensure reliable evaluation. PX2Tooth significantly
outperforms existing methods with an IoU of 0.793, demonstrating AI’s trans-
formative potential in digital dentistry. Future work will aim to enhance the
accuracy and efficiency of reconstruction while broadening the model’s applica-
tion to encompass a wider range of real-world dental situations.
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