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Abstract. Deep learning has enabled great strides in abdominal multi-
organ segmentation, even surpassing junior oncologists on common cases
or organs. However, robustness on corner cases and complex organs re-
mains a challenging open problem for clinical adoption. To investigate
model robustness, we collected and annotated the RAOS dataset com-
prising 413 CT scans (∼80k 2D images, ∼8k 3D organ annotations) from
413 patients each with 17 (female) or 19 (male) labelled organs, manually
delineated by oncologists. We grouped scans based on clinical informa-
tion into 1) diagnosis/radiotherapy (317 volumes), 2) partial excision
without the whole organ missing (22 volumes), and 3) excision with the
whole organ missing (74 volumes). RAOS provides a potential bench-
mark for evaluating model robustness including organ hallucination. It
also includes some organs that can be very hard to access on public
datasets like the rectum, colon, intestine, prostate and seminal vesicles.
We benchmarked several state-of-the-art methods in these three clinical
groups to evaluate performance and robustness. We also assessed cross-
generalization between RAOS and three public datasets. This dataset
and comprehensive analysis establish a potential baseline for future ro-
bustness research: https://github.com/Luoxd1996/RAOS.

Keywords: Abdominal organ segmentation · challenging corner cases ·
segmentation hallucination

1 Introduction

Accurate and robust organ segmentation is irreplaceable in abdominal malig-
nancy diagnosis, treatment, and follow-up. Especially in radiation therapy, in-
accurate organ segmentations might lead to dose miscalculations and further
bring under-treatment for malignancy tumors and unexpected side effects for
normal organs [15]. Previously, the organ-at-risk contours were implemented
by senior oncologists manually. Recently, many deep learning-based methods
achieved promising segmentation in abdominal organ segmentation tasks [5,10].
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These efforts show the potential to boost the clinical delineation flow and reduce
the delineation burden and time. However, their robustness and generalization
on real clinically challenging cases still have not been investigated, limiting their
clinical applications. The potential reason is lacking of public datasets that have
considered real clinical scenarios.

Recently, with the efforts of the whole community [2, 7, 8, 17, 19, 25], several
datasets were developed for the model development and performance evaluation.
These datasets show that deep learning can perform well on some common ab-
dominal organs, such as the liver, spleen, pancreas, kidney, and stomach. But
for small and complex anatomical organs (e.g., duodenum, and adrenal), it’s
still a challenging problem to achieve promising segmentation. Although these
datasets improve the abdominal organ segmentation research, some abdominal
organs are not being comprehensively investigated, such as the colon and intes-
tine not in AMOS [7]. In addition, most of these datasets [17,19] mainly focus on
investigating the robustness and generalization caused by the shift in intensity
distribution due to imaging protocols, scanners, or others. For more challeng-
ing clinical phenomenons, like patients with partial excision or whole excision
surgery, there are few studies evaluating the robustness and generalization of
models on these corner cases. And there has not been still a benchmark for the
models’ robustness and generalization evaluation on corner cases.

Based on the above observations, we present RAOS, a purely manually la-
belled whole abdominal organ segmentation dataset with different imaging, dis-
eases, and treatment strategies, including 19 common organ annotations required
in abdominal radiotherapy planning. Different from previous datasets, RAOS
has the following attributes: 1) comprehensive annotations, RAOS consists of
413 Computerized Tomography (CT) scans with over 84k slices, 7.4K 3D or-
gans, and 19 types of abdominal organs, which may be the largest and most
comprehensive manually labelled abdominal organ segmentation dataset. In ad-
dition, the RAOS provided professional annotations on some organs not shown in
previous public datasets (such as the rectum, colon, intestine, prostate, seminal
vesicles, and head of femur), which can improve the diversity of the public ab-
dominal datasets in both data distribution and organ classes. 2) clinically corner
cases, RAOS acquires images from patients suffered from different cancers and
with different treatment strategies (immunotherapy, radiotherapy, chemother-
apy, partial excision or whole excision surgery or combinations of them). Due to
the surgery intervention, the normal anatomy is braked and introduces a new
domain shift in the anatomy itself and further requires higher robustness and
generalization of models. According to the two characteristics, RAOS shows the
potential ability to be an evaluation benchmark for clinical corner cases.

With the efforts of data collection and manual annotation, we attempt to
propose a new dataset for robustness and generalization evaluation on clinical
corner cases and build a benchmark on several recent medical image segmenta-
tion methods. Specifically, we found that these methods can achieve encouraging
results on the without surgery subset, most of them DSC and NSD are larger
than 80%. However, these methods’ performance dropped significantly on two
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with surgery subsets, specifically on the surgery with organ missing subset, the
DSC dropped near 6%. These benchmarking results demonstrate that state-of-
the-art methods can not produce clinically applicable segmentation on corner
cases and with the clinical challenges increasing, the performance of these meth-
ods dropped significantly. The main contributions can be roughly summarized as
two-fold: 1) We built a large-scale abdominal organ segmentation dataset with
clinically challenging cases and 19 annotated organs, which is a more clinical and
challenging dataset than previous, enabling the robustness evaluation in clini-
cally challenging cases; 2) We established the RAOS benchmark by investigating
the state-of-the-art (SOTA) methods’ performance on clinically challenging cases
and introducing the organ hallucination ratio to measure the SOTA methods’
robustness on resection patients.

2 Related Work

2.1 Abdominal Organ Segmentation

Datasets and Benchmarks. Thanks to the community’s efforts, many abdom-
inal organ segmentation datasets have been built. The popular datasets include
BTCV [9], MSD [1], AMOS [7], WORD [17] and Abdomenct-1k [19] datasets.
The BTCV dataset [9] has 30 individuals with abdominal portal venous contrast
enhancement CT scans with 13 organ annotations. The main goal of the MSD
dataset [1] is to improve algorithms so that they can be applied to various tasks,
rather than focusing on achieving the best performance in all 10 tasks. The
AMOS dataset [7] has 500 CT scans and 100 MRI scans from different med-
ical centers, equipment manufacturers, imaging techniques, disease types, and
stages where each scan has 15 organ annotations. The WORD dataset [17] has
150 abdominal region volumes with 16 organ annotations. The AbdomenCT-1K
dataset [19] has 1k+ CT scans from multiple centers with 4 organ annotations
State-of-the-art methods. There are several segmentation methods [2,4,5,10–
12,23,24,26] to address the issue of the abdominal organ segmentation. Among
them, nnU-Net [5] is a segmentation method based on deep learning that can ad-
just to new tasks by customizing itself, such as preprocessing, network structure,
training, and post-processing. Inspired by vision transformers, Tang et al. [23] in-
troduce Swin UNETR for abdominal organ and tumor segmentation. It converts
multi-modal input into 1D embeddings, which are encoded by a hierarchical Swin
transformer. Hybrid methods succeed due to their wide non-local self-attention
coverage and a large number of model parameters, as per researchers. So Lee et
al. [10] present a compact 3D UX-Net, a ConvNet-based approach, that includes
ConvNet modules for precise volumetric segmentation.

2.2 Robustness on Cases With Organ Resection

Despite the existence of datasets have been built for multi-organ segmentation,
such as Totalsegmentator [25], WORD [17], AMOS [7] and Abdomenct-1k [18,19]



4 X. Luo, Z. Li, S. Zhang, W. Liao and G. Wang

datasets. Furthermore, there is a growing interest in developing segmentation
methods that cater to specific clinical scenarios. These methods include multi-
modal segmentation [3, 13], which involves utilizing data from various modal-
ities to segment desired objects accurately, and scribble-supervised segmenta-
tion [14,16], which involves using annotated scribbles to guide the segmentation
process. However, these methods are only inspired by various clinical scenarios of
data or annotation acquisitions, without considering difficult clinical situations,
like corner case scenarios. The primary concern we have is the phenomenon of
organ segmentation illusion that occurs after the completion of organ resection
surgery. Rickmann et al. [22] conducted preliminary research on hallucination
and found that sophisticated segmentation models often generate hallucinations
of organs following organ removal. These hallucinations are inaccurate predic-
tions of organs that cannot be rectified through oversampling or post-processing.
Our research goes beyond HALOS [22] by offering a more thorough examina-
tion of organ deficiencies. Our dataset covers the lack of gallbladders and the
absence of 7 other organs, including the prostate. Unlike HALOS [22], we con-
ducted a detailed quantitative analysis of the findings, revealing that hallucina-
tions resulting from organ loss are widespread and not specific to any particular
organ. Furthermore, our study compared the challenging clinical segmentation
scenario with traditional medical image segmentation scenarios, and the research
demonstrated that learning from difficult segmentation samples can enhance the
model’s robustness and generalizability.

2.3 Dataset Collection

In this study, we retrospectively collected 413 CT scans from 413 patients diag-
nosed with abdominal lesions from two institutions. All of them were produced
by several different SIEMENS CT scanners with/without contrast agents to
obey the clinical requirement. In addition, all 413 patients were treated with
different strategies, such as surgery, adaptive radiation therapy, chemotherapy,
or immunotherapy. It is worth pointing out that during the treatment processing
each patient was scanned more than once, we selected the latest CT scan of each
patient to construct the corner cases benchmark. The reason is that we found
that some anatomical structures could change with the treatment like some or-
gans were resected partially or whole after surgery and some lesions or organ
sizes became small after radiotherapy, chemotherapy, or immunotherapy [22].

3 RAOS

3.1 Dataset Statistical Analysis

The detailed clinical characteristics of the RAOS dataset are presented in Fig. 1.
In the RAOS dataset, 58.8% of patients (243) are male and the rest (170) are
female. In addition, most of these CT scans’ appearance is enhanced by injecting
contrast agents before the scanning, which can enhance tumor or lesions in bet-
ter view than non-contrast CT and further boost the clinical diagnosis. In this
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Fig. 1. Data characteristics, distributions, and examples of the benchmark.

dataset, all patients were diagnosed with abdominal lesions where 23.2%, 22.5%,
16.5%, 10.2%, 9.4%, and 7.7% of them suffered from cervix, rectum, bone, liver,
colon, and prostate, respectively and others include some metastatic tumors.
Moreover, we further split the dataset into three subsets according to whether
the treatment strategy has changed the anatomy: 1) without surgery (SetA),
patients treated by non-invasive methods without organ resection; 2) surgery
without organ missing (SetB), patients treated with surgery but just lesion and
the neighbouring region was resected; 3) surgery with an organ missing (SetC ),
patients treated with surgery and the organ with lesion was wholly resected.
The total numbers of each organ were listed in Fig. 1 (e), where the numbers of
prostate and seminal vesicles are less than others as females do not have these
two organs. Fig. 1 (f-i) shows an example of a male patient.

3.2 Ground Truth Generation

To build a high-quality clinical challenging cases segmentation evaluation bench-
mark, all CT scans were manually delineated by a senior radiation oncologist (>
8 years of clinical experience) using MIM Software [21] under the latest RTOG
delineation guideline [6]. Then, another oncologist expert (> 20 years of clinical
experience) was invited to check these annotations and further discuss the region
of unconsensus (especially for patients treated with resection surgery) to gen-
erate uniformity annotations. According to the above annotation procedure, all
413 CT scans (a total of 8000 3D organs) were comprehensively annotated with
17 (for female) /19 (for male) organs including the liver (Liv), spleen, left (L)
and right (R) kidney (Kid), stomach (Sto), gallbladder (Gal), esophagus (Eso),
pancreas (Pan), duodenum (Duo), colon (Col), intestine (Int), left and right
adrenal (Adr), rectum (Rec), bladder (Bla), left and right head of the femur
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Table 1. Comparison between SOTA methods in terms of DSC(%) and NSD(%) on
the SetA.

Method
nnUNet [5] REPUXNET [11] 3DUXNET [10] nnFormer [26] SwinUNETR [23] TransBTS [24] UNETR [4]

DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)
Liv 96.65±0.98 90.59±3.12 96.51±1.03 90.04±3.45 96.43±1.14 89.65±3.74 95.95±1.23 87.43±4.39 96.4±1.21 89.69±3.56 96.03±1.26 87.48±3.86 95.95±1.2 87.11±3.78
Spl 95.93±1.09 96.91±2.23 95.85±1.0 96.73±2.31 95.58±1.55 96.17±3.04 94.69±1.51 93.93±4.41 95.72±0.97 96.44±1.85 95.23±1.35 95.31±3.03 94.67±1.52 93.09±4.5
LKid 95.8±1.18 96.44±2.18 95.59±1.22 95.13±3.63 95.51±1.42 95.6±3.03 94.57±1.61 93.62±3.43 95.56±1.11 95.77±2.21 95.18±1.22 95.08±2.71 94.73±1.45 93.47±3.17
RKid 95.56±1.36 96.13±2.53 95.21±1.9 94.61±5.51 95.52±1.37 96.0±2.72 94.53±1.78 93.56±4.0 95.35±1.32 95.49±2.63 94.87±1.31 93.77±3.09 94.62±2.05 93.52±4.4
Sto 92.77±3.69 86.99±5.69 91.92±4.17 84.09±6.83 92.17±3.53 84.58±7.08 90.78±3.59 79.73±7.18 92.04±3.56 83.97±6.6 91.71±3.37 82.71±6.17 90.21±4.46 78.77±7.9
Gal 80.63±17.36 83.87±17.86 76.02±16.78 75.04±18.08 77.15±18.65 78.78±19.65 71.07±17.35 69.35±18.13 75.76±18.25 76.12±20.32 72.24±20.46 72.13±20.81 68.11±20.5 67.03±20.84
Eso 83.23±5.51 90.78±5.49 78.96±8.42 85.7±8.07 78.57±9.45 86.08±8.76 71.6±11.06 79.24±11.22 78.18±8.84 85.89±8.35 75.53±8.23 83.16±7.68 70.69±13.5 77.31±13.32
Pan 83.28±8.2 82.89±8.8 81.82±8.77 80.75±9.33 81.62±8.92 80.65±9.56 77.16±9.1 73.09±9.47 81.74±8.45 80.39±9.58 78.8±9.23 75.55±9.84 77.88±8.64 73.43±9.29
Duo 72.05±16.02 73.0±14.71 68.25±15.21 68.57±14.16 68.42±15.22 68.38±13.68 64.12±14.67 61.69±12.55 68.72±15.45 68.75±14.43 65.31±15.37 65.0±13.66 63.26±13.95 59.14±13.04
Col 87.1±8.39 84.74±10.09 85.4±8.26 80.79±9.91 85.25±8.36 80.22±10.14 81.65±8.39 72.27±10.14 84.96±8.12 79.3±9.85 84.12±8.19 77.45±10.13 80.72±7.31 69.74±9.1
Int 87.94±6.54 88.21±7.3 86.6±6.95 85.6±7.77 86.19±7.43 85.07±8.47 84.05±5.56 80.33±8.24 86.39±6.28 84.57±7.73 85.51±5.99 83.15±7.89 83.4±5.9 78.84±8.34
RAdr 71.82±15.22 85.04±16.7 69.63±15.28 82.83±16.5 70.58±14.79 84.29±15.34 59.2±16.48 73.56±17.66 69.1±14.99 82.73±16.47 62.84±14.05 75.85±15.39 63.14±14.94 77.95±16.27
LAdr 72.68±18.84 84.15±20.15 69.93±18.41 81.9±19.4 70.81±19.01 82.96±19.91 55.99±20.63 69.29±21.57 69.63±18.09 80.76±19.31 64.87±17.93 76.48±19.6 64.66±17.52 76.74±18.62
Rec 83.1±11.16 79.59±12.1 81.53±11.97 75.98±12.9 81.56±12.24 76.63±13.21 71.93±12.12 59.73±11.54 80.96±10.66 74.85±11.87 76.92±10.35 66.83±11.68 76.05±11.04 64.92±12.67
Bla 94.86±3.81 90.88±6.76 94.21±4.33 89.33±7.37 94.08±4.99 89.01±7.65 91.49±9.56 82.71±11.55 93.73±5.99 88.18±8.44 92.7±6.9 85.0±9.31 92.12±6.18 82.03±8.29
LFem 84.99±17.07 81.24±16.43 92.27±4.22 89.47±5.32 92.18±4.4 89.61±5.37 89.95±3.95 83.36±5.8 91.79±3.89 88.34±4.77 91.62±4.03 87.59±5.05 91.0±3.55 85.55±4.67
RFem 86.79±9.11 81.69±11.24 91.68±4.32 88.5±5.22 91.66±3.89 88.3±4.46 89.18±3.48 81.96±5.43 91.74±3.98 88.31±4.89 91.32±4.01 86.93±5.08 91.1±3.94 86.4±5.12
Pro 93.01±6.94 88.96±11.62 60.22±41.11 53.75±37.96 81.33±28.78 75.76±28.93 84.75±17.81 75.78±24.1 68.73±37.77 62.06±36.01 86.65±16.33 77.48±23.44 71.57±34.67 63.19±33.84
SVes 88.23±14.58 88.5±14.84 62.17±37.62 61.42±37.67 67.03±35.91 66.6±36.21 77.48±23.38 75.55±24.96 63.63±37.04 63.91±37.3 79.98±22.25 79.26±22.84 55.18±36.99 54.02±36.82
Mean ↑ 86.65 86.87 82.83 82.12 84.3 83.91 81.06 78.22 83.17 82.4 83.23 81.38 79.95 76.96

(Fem), prostate (Pro) and seminal vesicle (SVes). It is worth noticing that the
RAOS dataset is annotated from scratch by senior oncologists, which is differ-
ent from recent large-scale datasets using revised network predictions as ground
truth [7, 19, 25]. So, we believe the RAOS can play an important role in model
robustness and generalization evaluation on clinical corner cases and can also
provide more organ types annotation for future research (such as prostate and
seminal vesicle annotation in CT scans).

4 Experiments and Results

4.1 Implementation Details

Data. Considering the dataset consists of three subsets and the two surgery sub-
sets have fewer patients, we used the SetA as a development cohort for network
training and internal evaluation containing 220 and 67 patients, respectively.
Then, the SetB and SetC were used for robustness and generalization evalua-
tion as they consisted of clinical corner cases. Afterwards, we also investigated
the performance difference of baselines between the RAOS and several widely
used abdominal organ segmentation datasets.
Metrics. Two widely used metrics were used to measure the segmentation re-
sults in two different aspects [19], 1) a voxel overlap-based metric Dice similar-
ity coefficient (DSC); and 2) a boundary-based metric Normalized surface Dice
(NSD) with a fixed tolerance distance of 2 mm. Moreover, a new metric about
the organ hallucination ratio was introduced to measure false-positive predic-
tions of resection organs for the surgery with organ missing subset [22]. All of
these metrics’ implementations are publicly available.
Baselines. To build a fair benchmark for clinical corner case segmentation eval-
uation, this work employed several publicle methods as baselines (nnUNet [5],
3DUXNET [10],REPUXNET [11],nnFormer [26],SwinUNETR [23],TransBTS [24],
UNETR [4]). We ran all the experiments on a cluster with eight NVIDIA V100
GPUs and Pytorch 1.10 [20] using these implementations’ default hyper-parameters,
pre-trained models and other experimental settings.
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Table 2. Comparison between SOTA methods in terms of DSC(%) and NSD(%) on
the SetB .

Method
nnUNet [5] REPUXNET [11] 3DUXNET [10] nnFormer [26] SwinUNETR [23] TransBTS [24] UNETR [4]

DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)
Liv 96.06±2.57 88.01±8.73 96.34±1.0 88.34±5.83 96.4±0.84 88.51±5.52 95.75±1.65 86.32±6.7 96.36±1.08 88.62±5.55 95.77±1.47 85.26±8.72 95.93±0.88 85.92±5.48
Spl 95.32±2.41 95.32±6.25 95.41±1.27 94.61±5.29 95.38±1.28 94.44±4.88 94.64±1.44 92.94±5.18 95.28±1.85 94.64±6.68 95.35±1.3 95.09±3.56 94.61±1.46 91.95±5.4
LKid 94.46±5.04 95.13±5.72 95.14±1.39 94.23±4.06 95.31±1.16 95.44±2.33 93.93±1.66 91.85±4.46 95.33±1.22 95.29±2.26 94.73±1.3 94.34±2.82 94.5±1.25 92.93±2.84
RKid 94.78±4.25 95.38±5.28 95.27±1.54 94.54±4.49 95.53±1.18 96.16±2.1 94.48±1.6 94.01±3.25 95.39±0.98 95.8±1.77 94.66±1.25 93.51±2.63 94.94±1.06 94.54±2.48
Sto 91.94±4.46 82.98±11.58 92.0±3.54 81.59±9.57 90.68±6.29 80.92±11.48 89.35±6.77 75.66±13.35 90.1±8.43 79.79±14.7 91.08±4.53 79.94±10.92 89.02±7.66 75.26±13.79
Gal 78.03±14.33 81.28±15.22 71.82±14.84 70.38±17.15 76.25±12.82 77.76±16.48 60.22±25.56 60.53±26.61 74.6±14.6 76.57±18.91 67.77±18.24 67.63±19.25 65.56±18.42 64.66±20.2
Eso 81.59±4.94 88.06±6.18 78.36±5.74 83.76±7.42 78.49±6.6 84.35±8.14 71.46±9.8 78.39±10.44 77.65±7.86 83.88±9.12 74.92±8.08 81.28±10.14 71.96±10.96 76.88±13.32
Pan 84.11±6.65 82.57±8.62 83.4±6.79 81.29±8.78 83.05±7.1 81.16±8.98 77.08±9.04 71.12±10.79 81.87±8.46 79.14±10.33 79.6±7.19 74.62±8.91 79.27±7.82 73.9±9.33
Duo 70.63±11.85 71.61±12.7 70.56±11.59 70.05±12.62 68.97±13.28 69.21±13.48 65.33±10.83 62.35±12.46 69.08±12.88 68.49±13.28 67.03±14.5 66.88±14.88 66.94±10.56 61.63±10.92
Col 84.06±10.1 80.02±13.33 82.08±8.03 75.52±11.85 81.61±8.66 75.76±12.27 76.98±10.06 66.61±11.61 80.98±9.98 74.31±13.33 81.02±8.66 73.7±11.42 76.7±8.42 64.74±12.76
Int 86.55±6.45 86.05±10.29 84.72±7.02 83.31±10.99 84.57±7.55 83.06±11.71 81.86±6.68 78.34±10.62 84.37±7.48 82.52±11.56 83.91±6.88 81.86±10.52 81.8±6.63 77.92±10.62
RAdr 71.0±14.42 85.22±15.53 70.12±14.36 83.5±15.82 69.22±15.06 83.18±16.59 60.56±15.98 74.85±18.79 68.53±13.18 82.1±14.16 61.65±13.24 75.19±14.54 63.97±15.09 78.66±15.52
LAdr 75.17±9.2 86.66±9.93 72.86±10.1 85.24±10.26 73.49±9.83 85.55±9.97 57.28±17.31 70.18±18.68 71.7±9.77 82.87±10.41 66.88±10.18 78.9±11.31 65.7±11.28 76.94±12.45
Rec 80.25±9.49 76.07±12.56 78.9±9.22 73.29±11.0 78.54±10.59 73.56±13.55 73.95±10.35 65.16±11.17 77.53±10.62 72.48±13.26 74.82±10.94 67.43±13.45 73.52±9.77 64.55±12.95
Bla 93.12±10.75 89.11±11.33 92.83±11.13 88.76±10.8 92.77±11.28 88.28±11.83 90.87±12.83 83.06±12.51 92.68±10.85 87.76±11.58 92.34±10.33 86.43±10.85 91.53±11.33 82.81±13.49
LFem 70.52±32.47 68.31±30.1 92.2±4.9 89.44±6.62 92.21±5.21 89.29±7.76 89.49±4.3 81.97±7.7 91.44±4.35 87.2±6.59 91.47±4.64 87.26±6.95 90.65±3.82 84.56±6.27
RFem 83.35±10.91 78.13±12.43 91.64±4.15 88.32±5.56 91.63±3.87 87.81±4.52 88.91±3.36 80.94±5.95 91.85±4.15 88.76±5.63 91.34±4.06 87.12±5.53 90.88±3.91 85.9±5.08
Pro 87.31±10.16 79.7±15.26 67.48±32.98 57.88±30.62 85.76±11.68 77.08±18.09 76.48±22.09 64.85±25.68 75.28±26.42 64.19±27.69 78.6±21.84 68.0±24.21 76.54±22.56 64.29±25.49
SVes 79.99±23.38 81.0±22.75 66.71±31.67 66.2±31.67 72.06±28.32 71.92±28.49 57.79±35.3 59.85±32.96 66.56±33.23 67.3±32.89 67.1±32.37 67.7±30.69 56.04±34.38 55.98±33.96
Mean↑ 84.12 83.72 83.04 81.59 84.31 83.34 78.76 75.74 82.98 81.67 81.58 79.59 80.00 76.53

Table 3. Comparison between SOTA methods in terms of DSC(%) and NSD(%) on
the SetC .

Method
nnUNet [5] REPUXNET [11] 3DUXNET [10] nnFormer [26] SwinUNETR [23] TransBTS [24] UNETR [4]

DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)
Liv 95.35±8.73 88.21±9.78 94.88±9.77 86.74±10.97 94.68±10.59 86.25±11.31 94.69±8.72 85.0±9.91 94.82±9.75 86.35±10.78 94.84±8.83 85.68±9.2 94.69±7.57 84.29±10.02
Spl 95.37±2.08 96.16±4.17 94.6±4.1 94.42±7.26 94.06±4.26 92.33±9.2 93.67±3.16 92.13±6.57 94.78±2.34 94.24±5.78 94.4±2.35 93.44±5.66 93.73±3.26 91.19±7.01
LKid 90.95±18.92 90.91±19.31 90.65±18.87 89.09±19.41 90.09±19.12 88.4±20.23 90.91±15.83 88.88±16.65 90.24±19.04 88.81±19.71 90.53±18.71 89.19±18.9 89.1±19.04 86.25±19.85
RKid 89.36±21.98 89.31±22.5 78.17±35.35 77.2±35.45 82.02±32.03 81.72±32.25 89.16±20.25 87.71±21.13 79.28±34.01 78.77±34.25 79.08±33.69 77.0±33.86 77.8±34.59 75.91±34.45
Sto 90.75±7.93 83.16±10.58 89.07±8.37 78.51±13.61 87.96±10.16 77.43±14.23 88.25±8.86 75.38±12.54 88.63±9.31 77.7±12.89 89.76±7.27 78.56±10.68 87.04±8.89 72.54±13.67
Gal 54.69±42.8 55.7±43.43 33.81±38.65 33.11±37.57 40.2±41.14 40.44±41.63 42.32±40.04 41.08±39.28 40.19±40.99 40.17±40.65 33.92±38.87 34.17±38.65 29.8±35.52 28.95±33.86
Eso 80.51±9.84 88.11±9.88 73.6±15.88 79.7±16.75 73.08±16.81 80.47±17.29 68.98±15.81 75.86±16.61 73.48±17.13 80.72±17.65 70.65±16.13 77.87±17.15 67.08±18.84 73.21±19.86
Pan 81.05±12.36 79.52±13.05 77.66±13.28 74.63±14.67 76.39±14.01 73.45±15.19 72.47±14.84 67.8±14.49 77.32±13.66 74.15±15.06 75.26±13.09 70.74±14.44 71.87±14.31 66.33±14.45
Duo 64.79±17.55 64.32±17.55 59.43±18.65 58.32±17.85 58.49±17.42 57.36±17.21 57.8±16.81 54.95±16.02 58.16±18.68 57.82±18.16 59.14±18.93 56.4±18.3 55.92±16.32 51.25±15.73
Col 84.9±10.69 80.77±13.04 81.56±9.79 74.61±13.02 81.15±10.23 74.07±12.78 80.08±8.64 69.63±11.13 80.25±9.67 72.22±12.39 81.8±8.51 73.6±11.76 76.36±8.76 63.92±11.37
Int 86.07±7.65 84.07±10.31 83.62±7.93 79.59±11.83 83.08±8.45 78.82±12.06 81.63±8.34 75.89±11.75 82.81±8.27 78.21±12.04 83.24±7.03 78.42±11.31 80.15±8.14 72.88±12.43
RAdr 65.65±25.07 76.92±27.81 59.94±26.39 71.07±29.37 60.44±26.88 72.37±29.47 53.73±26.0 65.95±29.35 59.85±26.64 71.85±28.93 52.98±25.37 64.52±29.15 54.38±25.76 67.02±28.47
LAdr 72.46±15.78 83.46±16.52 66.04±19.35 77.72±19.96 68.06±17.9 79.51±19.29 51.16±26.37 62.06±30.4 66.8±15.86 77.68±16.49 60.31±18.51 70.72±20.57 60.75±18.57 71.77±19.7
Rec 77.26±21.4 73.87±21.36 74.63±23.52 70.05±23.24 74.14±23.14 69.02±23.3 65.32±22.85 55.39±20.52 73.02±22.85 67.86±22.55 71.23±22.83 63.28±21.9 68.27±22.44 59.17±21.47
Bla 92.57±9.36 87.12±13.07 91.67±8.99 84.35±13.65 91.14±10.47 83.35±15.44 89.01±12.38 78.8±16.66 91.42±10.14 83.87±14.49 90.51±9.95 80.96±14.86 88.42±13.02 76.14±16.99
LFem 79.64±22.58 76.56±21.06 90.14±11.83 87.0±12.1 90.37±11.41 86.75±12.26 87.94±11.66 80.58±11.72 90.26±11.23 86.2±11.46 89.64±11.42 85.02±11.98 89.27±11.18 83.39±11.36
RFem 80.67±21.41 76.47±19.87 89.55±12.87 86.01±13.26 89.44±12.81 85.48±13.01 86.77±12.71 78.98±13.31 89.4±13.38 85.52±14.01 89.42±11.61 84.3±12.26 89.07±12.13 83.83±12.94
Pro 80.23±31.1 75.25±31.64 45.94±41.89 39.09±37.18 68.18±37.7 61.27±37.33 75.99±30.08 67.43±33.03 53.65±41.89 46.83±38.5 70.1±34.91 61.22±36.62 55.05±40.62 46.44±37.33
SVes 68.13±38.82 68.3±38.87 43.79±41.14 42.61±40.65 46.26±41.7 45.35±41.33 69.11±35.28 67.67±35.5 39.25±39.99 38.54±39.6 52.79±41.14 52.47±41.06 37.46±38.96 36.83±38.06
Mean ↑ 80.55 79.90 74.67 72.83 76.27 74.41 75.74 72.17 74.93 73.03 75.24 72.50 71.91 67.96

4.2 Results

Results on the SetA. We first investigated seven state-of-the-art 3D medical
image segmentation methods on the SetA, including a CNN-based nnUNet [5]
and six transformer-based REPUXNET [11], 3DUXNET [10], nnFormer [26],
SwinUNETR [23], TransBTS [24] and UNETR [4]. Table 1 presented the quan-
titative results in terms of DSC and NSD showing that nnUNet was still the best
solution for abdominal organ segmentation which outperformed all transformer-
based methods. Besides, we found that the nnUNet predictions of several large-
size organs in the SetB (like Liv, Kid, Sto, Pro) are clinically applicable, as these
results are comparable or better trend than recent clinical assessments [15]. How-
ever, for complex structures and small organs, there are still performance gaps
between these SOTA methods and clinical requirements.
Robustness of SetB and SetC . We further studied these SOTA methods’
robustness and generalization on the two subsets consisting of clinically chal-
lenging cases, where these SOTA methods were trained on the SetA and then
were applied for testing directly. These results showed that all SOTA methods go
to bad performance for patients with surgery resection, indicating the two sub-
sets are challenging for recent methods. In addition, in the comparison between
Table 2 and Table 3, it can be observed that these SOTA methods presented a
more significant performance drop, such as nnUNet with a performance drop of
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Table 4. The hallucinations ratio of seven different methods on missing organ cases.

Method nnUNet [5] REPUXNET [11] 3DUXNET [10] nnFormer [26] SwinUNETR [23] TransBTS [24] UNETR [4]
LKid 1.0 1.0 1.0 0.67 1.0 1.0 1.0
RKid 0.33 1.0 0.75 0.18 0.92 0.91 1.0
Gal 0.68 1.0 0.93 0.78 0.85 0.97 1.0
RAdr 0.75 0.88 0.75 0.78 0.75 1.0 0.78
LAdr 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Rec 0.67 1.0 1.0 1.0 1.0 1.0 1.0
Pro 0.24 0.89 0.43 0.18 0.73 0.32 0.65
SVes 0.38 0.77 0.72 0.23 0.84 0.52 0.79
Mean ↓ 0.63 0.94 0.82 0.6 0.89 0.84 0.90

Table 5. The generalizable results from RAOS to BTCV and AbdomenCT-1K.

Dataset RAOS → BTCV [9] RAOS → AbdomenCT-1K [19]

Method
nnUNet [5] 3DUXNET [10] nnUNet [5] 3DUXNET [10]

DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)
Liv 93.85±6.46 81.03±9.02 94.02±3.62 80.06±9.72 95.83±0.71 83.66±4.57 95.08±1.05 81.48±4.17
Spl 86.82±16.13 82.72±17.44 85.95±14.83 77.94±18.99 94.73±4.25 93.45±5.61 92.49±7.4 87.32±10.85
LKid 88.61±9.34 85.42±9.8 87.14±14.5 83.12±14.03 92.18±3.86 86.28±6.01 91.7±9.44 86.14±8.5
RKid 87.21±16.46 84.44±14.94 87.57±15.49 82.15±13.28 92.17±6.59 87.3±6.95 91.49±7.51 85.33±8.36
Sto 82.58±17.46 69.75±18.05 74.45±21.58 61.25±20.43 89.51±9.55 80.21±11.82 90.25±5.84 79.97±8.76
Gal 68.41±30.91 68.27±30.42 62.73±32.35 63.17±30.44 87.21±5.18 87.59±9.03 82.44±12.16 81.64±14.29
Eso 78.64±7.37 84.41±8.19 74.86±11.8 80.38±12.83 79.49±7.54 82.34±7.7 67.19±18.49 70.48±17.6
Pan 77.16±10.29 72.84±12.95 61.48±23.45 58.51±22.75 79.79±7.15 69.08±11.93 73.24±13.72 62.06±15.56
RAdr 69.38±6.32 86.75±7.28 66.01±8.37 83.96±9.59 77.67±7.5 92.48±7.39 70.07±16.37 86.27±16.58
LAdr 68.57±14.39 85.02±15.5 64.78±16.22 79.92±18.73 75.09±5.81 92.07±6.32 74.13±5.94 88.86±7.46
Mean ↑ 80.12 80.06 75.90 75.05 86.37 85.45 82.81 80.95

2.53% and 6.1% in the term DSC, respectively. And, most of the organs with
performance drop are the whole or partially resected organs after surgery or their
neighbouring organs, like Kid, Gal, Adr, Rec, Pro, SVes. The potential reason
may be the surgery breaks the normal anatomical structure or contextual ap-
pearance (like intensity distribution) and further leads to a performance drop.
Afterwards, we further investigated the SOTA methods’ performance on surgery
resection organs where these resected organs should be predicted as background
rather than any organ. Table 4 presented the organ hallucination ratio of these
SOTA methods reformatted by false positive rate [22]. It shows that most SOTA
methods can not distinguish the surgery-resected organ effectively and produce
hallucination prediction, suggesting that this challenging task needs more effort
to achieve clinically applicable performance.
Cross-evaluation between different datasets. To build the general chal-
lenging cases benchmark, we studied the robustness and generalization of SOTA
methods across different datasets. Due to the different labelled organ categories,
we just reported the results of the same annotated organ categories in Table 5
and Table 6. Table 5 showed that there are domain gaps between RAOS and
BTCV [9], AbdomenCT-1K [19] and the domain shift between RAOS and BTCV
is more significant than AbdomenCT-1K. Table 6 presented the cross-evaluation
results between RAOS and AMOS showing that the domain gap is significant
except for the without surgery subset. The above results further provided a new
baseline and dataset for domain adaptation research.

5 Conclusion

In this study, we retrospectively collected 413 CT scans with 19 organ annota-
tions to build an abdominal organ segmentation robust evaluation benchmark.
The RAOS dataset was split into three subsets according to patients’ treatment
strategies, without surgery, surgery without an organ missing and surgery with
an organ missing. To the best of our knowledge, the RAOS is the first dataset
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Table 6. The evaluation results between the RAOS and AMOS based on the nnUNet.

Dataset
RAOS → AMOS [7] AMOS [7] → RAOS (SetA) AMOS [7] → RAOS (SetB) AMOS [7] → RAOS (SetC )
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

Liv 95.72±2.53 88.31±7.84 96.12±1.08 88.75±3.72 95.15±4.41 87.49±6.31 94.74±9.19 86.3±9.45
Spl 94.24±3.47 93.31±6.95 94.97±1.19 95.37±2.65 92.56±9.43 93.07±9.46 94.3±2.28 93.91±4.91
LKid 92.58±3.33 91.7±4.75 93.36±2.02 92.44±3.63 91.71±5.7 90.67±6.98 90.24±15.21 88.12±15.52
RKid 92.79±2.98 91.84±4.74 93.38±2.21 92.62±4.43 92.52±4.41 91.76±6.29 89.95±16.56 88.49±17.36
Sto 87.61±13.65 81.03±16.83 91.64±3.16 82.96±6.79 91.42±2.85 80.49±8.43 90.06±5.51 79.45±9.72
Gal 74.6±28.12 77.89±28.93 74.58±23.18 77.85±23.23 72.39±21.74 76.71±20.42 50.49±42.8 51.85±43.92
Eso 79.28±14.31 88.36±14.69 79.32±6.19 87.35±6.52 77.85±6.4 85.09±7.78 75.68±13.11 83.67±13.82
Pan 81.77±9.23 82.0±10.74 80.39±8.2 79.21±9.47 82.03±5.51 79.89±7.57 77.81±12.5 75.34±14.06
Duo 69.88±13.43 70.83±14.53 67.42±17.21 69.83±16.59 66.75±16.74 70.53±16.5 61.09±18.2 61.81±18.73
RAdr 70.12±8.39 88.69±8.09 65.87±14.82 82.39±17.11 64.29±13.13 80.96±14.93 59.29±25.27 72.84±30.15
LAdr 68.52±9.06 86.93±9.89 64.43±18.03 79.25±20.67 68.33±8.38 83.49±10.15 65.74±15.56 80.03±17.49
Bla 78.51±23.58 74.94±23.13 92.37±10.06 86.21±11.29 93.36±4.54 86.8±7.75 90.75±13.23 83.14±14.9
Mean ↑ 82.14 84.65 82.82 84.52 82.36 83.91 78.34 78.74

for clinically relevant corner case segmentation evaluation. In addition, this work
conducted a comprehensive evaluation of seven recent state-of-the-art methods
and further investigated the domain gap between the proposed dataset and sev-
eral public datasets. The results showed that most recent works can not perform
well when segmenting clinically challenging cases with irregular anatomy, such
as patients with surgery. Meanwhile, it can be found that there are domain shifts
between different datasets, and the RAOS can play a new role in the abdomi-
nal organ segmentation topic research. In the future, we will extend RAOS by
adding more clinically challenging cases to boost the development of the clini-
cally acceptable segmentation method.
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