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Abstract. The right to be forgotten, as stated in most data regula-
tions, poses an underexplored challenge in federated learning (FL), lead-
ing to the development of federated unlearning (FU). However, current
FU approaches often face trade-offs between efficiency, model perfor-
mance, forgetting efficacy, and privacy preservation. In this paper, we
delve into the paradigm of Federated Client Unlearning (FCU) to guar-
antee a client the right to erase the contribution or the influence, in-
troducing the first FU framework in medical imaging. In the unlearning
process of a client, the proposed model-contrastive unlearning marks a
pioneering step towards feature-level unlearning, and frequency-guided
memory preservation ensures smooth forgetting of local knowledge while
maintaining the generalizability of the trained global model, thus avoid-
ing performance compromises and guaranteeing rapid post-training. We
evaluated our FCU framework on two public medical image datasets,
including Intracranial hemorrhage diagnosis and skin lesion diagnosis,
demonstrating that our framework outperformed other state-of-the-art
FU frameworks, with an expected speed-up of 10-15 times compared
with retraining from scratch. The code and the organized datasets can
be found at: https://github.com/dzp2095/FCU.
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1 Introduction

To address the strict requirements on the collection, storage, and processing of
personal data proposed in regulations like the General Data Protection Reg-
ulation (GDPR) [30] and the California Consumer Privacy Act (CCPA) [12],
federated learning (FL) [23, 7, 21, 19] is regarded a promising privacy-preserving
approach in medical imaging, which enables multiple parties to train a model
collaboratively without sharing patient data. However, despite its decentralized
nature, current FL research in medical imaging has not fully addressed the right
to remove the influence of data from a trained global FL model, a right explic-
itly stated in GDPR as the right to be forgotten and in CCPA as the right to
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delete. In centralized learning, the right to have data removed can be realized by
Machine Unlearning (MU) [32, 2]. Regardless, the existing MU techniques are de-
veloped for the centralized scenarios, posing significant challenges to their direct
application in distributed FL settings [11], highlighting the need for dedicated
federated unlearning (FU) approaches.

Retraining from scratch without the target forgotten data is regarded as
a naive way to achieve unlearning [1]. Nevertheless, this approach demands a
large cost in communication and computation, especially in FL [25]. Hence, re-
cent studies have proposed various federated unlearning (FU) methods including
re-calibration of historical updates [20], gradient quantization [3], gradient mod-
ification [11] or knowledge distillation [31, 34]. However, these methods often
compromise performance or privacy. For instance, FedEraser[20] accelerates re-
training progress and removes the contribution of a target client iteratively by
utilizing historical parameter updates of clients stored on the server side, yet
this approach requires additional storage and poses a risk of data reconstruc-
tion by a malicious server [28]. FFMU [3] applies randomized gradient smooth-
ing and quantization to execute unlearning operations on the target forgotten
data, but may fail to retain the performance when a client decides to remove
all their data. UPGA [11] formulates the unlearning process as a constrained
maximization problem by limiting the unbounded loss to an ℓ2-norm sphere by
a designated reference model that may be difficult to obtain. FUKD [31] removes
the contribution of a target client by subtracting the historical parameter up-
dates and recovering the model performance through knowledge distillation [14],
necessitating unlabeled data on the server. Additionally, MoDe [34] adjusts pre-
trained model parameters through two phases—knowledge erasure and memory
guidance—to reduce discriminability for target forgotten data and restore perfor-
mance, dependent on the initial state of the degraded model. These limitations
underscore the necessity for a more effective FU framework that addresses these
challenges without compromising efficiency or privacy.

To make better use of the information contained in the teacher network, since
[26], most knowledge distillation shifted from output distillation to feature distil-
lation [13, 33], showing superior performance on various tasks. However, existing
knowledge distillation-based unlearning methods focus on merely output distil-
lation [34, 5, 17]. MoDe [34] achieves unlearning by using a degraded model (i.e.,
a “Bad Teacher”) that has never been trained on the forgotten data, to gener-
ate pseudo labels for the student model on forgotten data. Chundawat et al. [5]
employ a teacher-student objective that minimizes KL-Divergence between the
output of the “Bad Teacher” and the student, encouraging the student model to
align closely with the “Bad Teacher” on the forgotten set. Similarly, SCRUB [17]
suggests maximizing KL-Divergence to encourage the student model to “move
away” from the trained teacher model on forgotten data. To the best of our
knowledge, no method has yet considered encouraging the student model to
learn from the “Bad Teacher” at the feature level to guarantee a higher level
forgetting, marking an opportunity for innovation in unlearning.
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Fig. 1. Overview of Federated Client Unlearning (FCU): The target client conducts
unlearning locally and updates the server with the unlearned model, which then serves
as the initial model for post-training on the remaining clients.

In this paper, we delve into the paradigm of Federated Client Unlearning
and present the first FU framework in medical imaging to ensure the right of
a target client to remove the contribution of their data from a trained global
model efficiently. We use Model-Contrastive Unlearning (MCU) to encourage
the model to perform similarly with a downgraded model and differently with
the trained global model on the forgotten data, which pioneers a step towards
achieving unlearning at the feature level. Meanwhile, to preserve the generalized
knowledge and only remove client-specific knowledge of the target client, we use
Frequency-Guided Memory Preservation (FGMP) to preserve the low-frequency
components of the trained model, ensuring a rapid post-training on the remain-
ing clients. We validate our proposed method on two real-world tasks, including
intracranial hemorrhage (ICH) diagnosis and skin lesion diagnosis. Extensive ex-
periments demonstrate that our method outperforms a number of state-of-the-
art FU methods, without compromising privacy, and with an expected speed-up
of 10-15 times compared with retraining from scratch.

2 Methodology

2.1 Preliminaries and Overview

We adopt a typical Federated Unlearning (FU) scenario as described in prior
works [11, 20], involvingK clientsC = {C1, C2, . . . , CK} and a central server par-
ticipating in FL. The dataset held by each client is denoted asD = {D1, D2, . . . , DK}.
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Suppose that after t rounds of FL, each client possesses a trained global model
Mtr. We refer to the client Cu wants to opt out as the target client, where Cu

requests to remove the contribution of their data Du from Mtr. Following [20,
3, 11], the goal of this study is to unlearn the Du, effectively eliminating its
influence from Mtr to produce an unlearned model Mun.

Our proposed framework FCU is presented in Fig. 1. The target client Cu

initiates the unlearning process by performing local unlearning to generate the
initial unlearned model Mun, where the proposed Model-Contrastive Unlearning
(MCU) is to make Mun perform similarly with a model that has never trained on
Du and differently with the trained model Mtr at the feature level. Furthermore,
to preserve the generalized knowledge and only remove client-specific knowledge
of the target client, we use Frequency-Guided Memory Preservation (FGMP) to
preserve the low-frequency components of the trained model, thereby achieving
a rapid post-training to generate the final unlearned model M̃un.

2.2 Model-Contrastive Unlearning

The intuition of our Model-Contrastive Unlearning (MCU) is to achieve unlearn-
ing by encouraging the unlearned model Mun perform similarly at feature level
to a model that has never been trained on Du, which we refer to as a down-
graded model Mdown. Model-Contrastive Learning was first proposed in [18],
where they aim to decrease the representation drift between the local model
and the global model in FL. In contrast, we propose to encourage the unlearned
model to output similar features as a downgraded model Mdown (pull) and dis-
similar features as the trained global model Mtr (push), where we refer to this
process as Model-Contrastive Unlearning (MCU).

We use a model with the same structure as the Mtr but only pretrained on
ImageNet[6] while not being trained on Du as the downgraded model Mdown,
based on two intuitions: 1) Mdown also serves as pretrained model for Mtr in
FL training before FU, 2) Mdown possess the ability to extract low-level features
of images [24]. In contrast, MoDe[34] chose a randomly initialized model as a
degraded model to generate pseudo labels for the unlearned model, where this
randomly initialized model may be strongly dependent on the initial weights.
Similar to [18], our Model-Contrastive Unlearning loss can be formulated as:

Lmcu = − log

(
exp(sim(z, zdown)/τ)

exp(sim(z, zdown)/τ) + exp(sim(z, ztr)/τ)

)
, (1)

where sim(·, ·) is a cosine similarity function, τ , known as the temperature, z
represents the feature vector extracted by the model for a given input x, zdown

is the feature vector extracted by the downgraded model Mdown, and ztr is the
feature vector extracted by the trained global model Mtr.

2.3 Frequency-Guided Memory Preservation

The goal of the unlearning process is to remove the specific knowledge of the
target client Cu without losing the generalized knowledge already learned in
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a trained global model Mtr. Inspired by the findings of [22, 4], which indi-
cates that the low-frequency components of parameters may reflect the basis
for global features across all clients while high-frequency components may con-
tain specific knowledge for an individual client, we introduce Frequency-Guided
Memory Preservation (FGMP). FGMP aims to preserve the low-frequency com-
ponents of Mtr and high-frequency components of the unlearned model Mun to
acquire a newly unlearned model after MCU. Intuitively, the newly unlearned
model M′

un maintains the generalized knowledge inherited from Mtr and has
the specific knowledge from Du removed in high-frequency components by MCU.

Specifically, we conduct FGMP every TFGMP iterations (e.g. TFGMP is set
to 10 in our experiment) while MCU is continuously executed, resulting in an
unlearned model Mun. We use FFT to convert the parameters of Mun and
Mtr into frequency domain, and preserve the low-frequency part of Mtr and
high-frequency part of Mun. Afterwards, the newly unlearned model M′

un is
constructed by inverse FFT (IFFT). We conduct FFT and IFFT of model pa-
rameters similarly as [4]. To clarify, for the weights w in a convolutional layer
that has N input channels, H output channels and a kernel with size d1×d2, we
reshape w ∈ RN×H×d1×d2 into a 2-D matrix w′ ∈ Rd1N×d2H to ease the process
of FFT and IFFT. Then, we can obtain the amplitude map FA and phase map

FP through the Fourier transform F = FAejF
P

:

F(w)(m,n) =
∑
x,y

w′(x, y)e
−j2π

(
x

d1N m+ y
d2H n

)
, j2 = −1. (2)

To extract the low-frequency components, we define a mask matrix M of the
same dimensions as w′, M ∈ {0, 1}d1N×d2H . Mij = 1 for the central region, and
Mij = 0 elsewhere. The central region is a rectangle centered around the middle
ofM , with dimensions ⌊rd1N⌋×⌊rd2H⌋, where r is the ratio of the low-frequency
part to be preserved, and ⌊·⌋ denotes the floor function to ensure integer dimen-
sions. Hence, the newly unlearned model in the frequency domain that preserves
the low frequency part ofMtr and high frequency part ofMun can be formulated
as: F̂A(w′

adj)) = M ⊙FA(wpre)+ (1−M)⊙FA(wadj), where ⊙ means element-

wise multiplication. Finally, we apply IFFT F−1 to convert the amplitude and
phase maps back to the parameter as w′

adj = F−1(F̂A(w′),FP (w′)).
After FGMP, we obtain a newly unlearned model M′

un. Intuitively, the high-
frequency components of Mun have been made to forget the specific knowledge
of the target client due to the application of MCU, while the low-frequency com-
ponents retain the generalized knowledge. This selective retention and forgetting
forms a solid foundation for post-training, ensuring that the model preserves its
ability to generalize well while removing client-specific knowledge.

2.4 Overall of FCU framework

After local unlearning, the server sends the unlearned model Mun to the re-
maining clients request them to conduct post-training using FedAvg [23], where
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Mun serves as the initial global model and the global objective can be formu-
lated as: min

W
L(W ) =

∑
k∈{1,...,K}\{u} Lk(W ), where Lk is the local objective

of client Ck, and W is the parameters of the global model. The global model
parameter W is iteratively updated with the aggregation of local models on the
remaining clients, which is defined as W t+1 =

∑
k∈{1,...,K}\{u}

nk

n−nu
W t

k, where:

W t+1 represents the updated global model parameters, nk and nu denote the
sample sizes of the k-th client and client u, respectively, n is the total sample size
from all clients, and W t

k are the parameters from the k-th client’s model. Due
to the memory preservation achieved by FGMP, our post-training can efficiently
restore model performance on remaining datasets with a few rounds.

3 Experiments

3.1 Experiment Setup

Datasets. We evaluated our method on two public real-world medical im-
age classification tasks:1) Intracranial hemorrhage (ICH) diagnosis. We use the
RSNA-ICH dataset [8] and follow [16] to perform the binary diseased-or-healthy
classification, and randomly sample 25,000 slices. 2) ISIC2018 skin lesion diag-
nosis. We conducted skin lesion diagnosis with HAM10000 [29], which contains
10,015 dermoscopy images. Training, validation and testing sets for both datasets
were divided into 7:1:2. For both tasks, to simulate heterogeneous multi-source
data, following [27], Dirichlet distribution,i.e. Dir(α = 1.0), is used to divide the
training set to 5 clients.
Implementation Details. For both tasks, We used DenseNet121[15] as the
backbone. The network was optimized by Adam optimizer where the momentum
terms were set to 0.9 and 0.99, with learning rate set to 1e−5 at target client
and 1e−4 for other clients. The total batch size was 64 in both local training and
local unlearning, the local unlearning iterations were 100. The temperature τ in
MCU loss was 0.5 by default like [18]. The interval TFGMP to execute FGMP
in MCU was set to 10. During post-training, the local training iterations were
20, and the total communication rounds were 10. The images in both tasks were
resized to 224×224. For Task 1, data augmentation included a combination of
random flip, rotation, translation, scaling, and gaussian blur. For Task 2, we
employed the random flip, rotation, and translation.
Evaluation Metrics. We adopt four widely recognized metrics as in recent
representative FU study FFMU [3] and other commonly recognized metrics to
assess machine unlearning performance across three dimensions: 1) Fidelity
that assesses whether the unlearning methods preserve the original model’s per-
formance. This includes measuring F1-score, Accuracy, errors on the retained
data Errorr (evaluated on Dr, the data held by the remaining clients C \ Cu),
and errors on the test dataset Errort. 2) Efficacy that evaluates the success of
an FU method in eradicating the influence of the target client’s data, Du. This is
gauged by Errorf , the classification errors on the forgotten dataset Df (i.e. the
dataset on the target client Cu). A model’s Errorf close to that of a retrained
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Table 1. Comparison with state-of-the-art methods on ICH diagnosis. * denotes the
retrained model is regarded as the gold-standard for Errorf .

Methods
Fidelity Efficacy Efficiency

Accuracy F1 Errort Errorr Errorf Runtime (s)

Origin 86.84 86.84 13.15 8.44 6.59(−5.7) 3612
Retrain 85.52 85.40 14.48 10.60 12.28*(0.0) 2873

Finetune 86.11 86.01 13.88 7.86 7.25(−5.0) 301
FFMU [3] 85.09 84.98 14.90 10.28 9.79(−2.5) 249
MoDe [34] 80.88 80.62 19.12 14.59 18.34(+6.1) 509
UPGA [11] 78.96 78.93 21.04 20.43 20.25(+8.0) 1031

FedEraser [20] 84.32 84.30 15.67 11.72 15.29(+3.0) 906
FUKD [31] 83.66 83.54 16.34 12.49 15.63(+3.4) 1347

w/o FGMP 85.42 85.36 14.58 10.21 11.80(−0.5) 1831
w/o post-training 82.57 82.53 17.42 12.06 16.80(+4.5) 14

Ours 86.40 86.32 13.60 8.11 11.37(−0.9) 177

model (which has never encountered Df ) is considered favorable [3, 10, 9]. 3)
Efficiency that measures the reduction in communication and computational
overheads by quantifying runtime, with each method trained to convergence for
a fair comparison. All the results were averaged over 3 runs.

3.2 Comparison with state-of-the-arts

We compared our method with the trained global model denoted as origin,
the model finetuned on the trained global model as a baseline, and the model
retrained from scratch as gold-standard for efficacy [3, 10, 9]. Besides, we com-
pared with five recent state-of-the-art (SOTA) methods, including FFMU [3]
applying random gradient quantization, MoDe [34] utilizing a degraded model
to unlearn, UPGA [11] employing projected gradient ascent to maximize the
empirical loss on the target client, FedEraser [20] eliminating the influence of
the target client by historical parameter updates iteratively, and FUKD [31]
that erases the contributions of clients by subtracting the historical parameter
updates and restore the performance by knowledge distillation.

The quantitative results for two tasks are presented in Table 1 and Table 2.
Our method leads in fidelity, achieving improvements of approximately 1.5% in
accuracy and 1.6% in F1 score for Task 1, and 1.9% in accuracy and 5.0% in F1
score for Task 2, compared to the second-best FU method, showing robustness
in model performance maintenance. In efficacy, it nearly matches the retrained
model considered the standard in forgetting [3, 10, 9], ensuring effective unlearn-
ing. Besides, we proved that the finetune method failed to achieve unlearning.
For Efficiency, we see an impressive runtime reduction, achieving roughly a 10
to 15 times speed-up compared with retraining from scratch.
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Table 2. Comparison with state-of-the-art methods on Skin Lesion diagnosis. * denotes
the retrained model is regarded as the gold-standard for Errorf .

Methods
Fidelity Efficacy Efficiency

Accuracy F1 Errort Errorr Errorf Runtime (s)

Origin 79.98 57.90 20.01 9.66 29.95(−5.4) 2469
Retrain 81.52 54.76 18.47 5.40 35.37*(0.0) 2038

Finetune 80.52 55.43 19.47 8.43 30.49(−4.9) 289
FFMU [3] 79.67 44.64 20.33 10.32 30.99(−4.4) 176
MoDe [34] 73.04 33.63 26.96 16.55 50.84(+15.5) 431
UPGA [11] 75.08 38.43 24.91 17.51 48.28(+12.9) 899

FedEraser [20] 80.13 53.64 19.87 8.72 37.49(+2.1) 672
FUKD [31] 78.11 41.27 21.89 12.69 39.72(+4.4) 1132

w/o FGMP 80.91 53.92 19.09 6.69 33.69(−1.6) 1579
w/o post-training 76.83 40.79 23.16 13.85 42.58(+7.2) 13

Ours 81.67 56.32 18.33 8.22 34.45(−0.9) 156
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Fig. 2. Ablation study of FGMP and MCU across local unlearning iterations, showing
forgotten Errorf and Accuracy for the two tasks.

Ablation study.We conducted ablation studies to assess the effectiveness of the
primary components of our FCU framework. As shown in Table 1 and Table
2, the performance drops significantly without post-training, and the runtime
increases a lot without FGMP. The effectiveness of our FGMP in facilitating
local unlearning across various iterations is demonstrated in Fig. 2, which can
maintain the performance at its maximum level. Without FGMP, there is a
noticeable decline in test accuracy even before the model has fully executed
unlearning across the entire dataset. Besides, we replace our MCU with KL-
based knowledge distillation [5] and pseudo label-based knowledge distillation
[34], which shows that our MCU can better preserve the performance on test set
when achieve at similar forgotten error.
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4 Conclusion

We present the first federated unlearning framework in medical imaging, which
facilitates the right for a client to be forgotten. In the local unlearning phase, our
FCU utilizes Model-Contrastive unlearning (MCU) to encourage the model to
perform similarly to a model that has never seen the forgotten data at the feature
level. To preserve the generalized knowledge, we use Frequency-Guided Memory
Preservation (FGMP) to preserve the low-frequency components of the trained
global model, ensuring a smooth forgetting process. Benefited from FGMP, our
FCU framework quickly restores performance with minimal post-train rounds,
achieving a 10-15 times speed-up over retraining from scratch, while demonstrat-
ing remarkable federated unlearning effectiveness for medical imaging.
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