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Abstract. The early detection and precise diagnosis of liver tumors are
tasks of critical clinical value, yet they pose significant challenges due to
the high heterogeneity and variability of liver tumors. In this work, a pre-
cise LIver tumor DIAgnosis network on multi-phase contrast-enhanced
CT, named LIDIA, is proposed for real-world scenario. To fully utilize
all available phases in contrast-enhanced CT, LIDIA first employs the
iterative fusion module to aggregate variable numbers of image phases,
thereby capturing the features of lesions at different phases for better
tumor diagnosis. To effectively mitigate the high heterogeneity problem
of liver tumors, LIDIA incorporates asymmetric contrastive learning to
enhance the discriminability between different classes. To evaluate our
method, we constructed a large-scale dataset comprising 1,921 patients
and 8,138 lesions. LIDIA has achieved an average AUC of 93.6% across
eight different types of lesions, demonstrating its effectiveness. Besides,
LIDIA also demonstrated strong generalizability with an average AUC
of 89.3% when tested on an external cohort of 828 patients.

Keywords: Liver tumor · Lesion segmentation · Multi-phase fusion.

1 Introduction

Liver is the largest solid organ in human body and plays a crucial role in various
physiological functions. Meanwhile, it can be a common site for many malignant
and benign tumors. According to global cancer statistics, liver cancer became
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the third leading cause of cancer death worldwide in 2020 [1]. This high mortal-
ity rate is partially attributed to the late diagnosis of liver cancer, since patients
with late-stage liver cancer discovered have limited treatment options and often
a poor prognosis as well. Therefore, early detection and accurate diagnosis of
liver tumors have become an urgent clinical task. Dynamic contrast-enhanced
computed tomography (DCE-CT) is a widely utilized imaging technology for
the diagnosis of liver tumors. To obtain DCE-CTs, multiple images are scanned
at consecutive time points after intravenous injection of contrast agents. These
multi-phase images provide valuable diagnostic information about the charac-
teristics (e.g. vascularity) of lesions via the pattern of contrast agent enhance-
ment [12]. However, these characteristics may be difficult to interpret due to
the high degree of diversity and heterogeneity of liver tumors, especially for rare
tumor types and atypical imaging signs. Additionally, manual analysis of CT im-
ages is time-consuming and often influenced by personal experience and biases
of radiologists [20].

Previous studies [2,16,18,20] have demonstrated the capability of deep learn-
ing technology in identifying subtle textural details and shape variations of tu-
mors that are imperceptible to human observation. In recent years, considerable
efforts have been made on the segmentation, detection, and classification of liver
tumors. A large proportion of works focus on the segmentation [1,10,13,15,21,8]
or detection [5] of tumors without differentiating their types. These works pro-
posed improved convolutional neural network (CNN) backbones [10], novel losses
using lesion edge information [13,15], weakly-supervised teacher-student net-
work [21], or synthetic training data [8]. Some studies investigated methods
to classify tumor types with manually drawn region-of-interests (ROIs) [14,19].
Two-stage methods [23,20] first detect tumor ROIs with Faster R-CNN, and then
classify each ROI with 3D CNN. Recently, a 3D instance segmentation frame-
work is proposed in [16] to jointly segment and classify liver tumors. Besides,
multi-phase image fusion has been studied using early fusion [16], hetero-modal
image fusion [5], ConvLSTM [17], spatial and channel attention [20], etc.

Despite progresses have been made, there are still two issues that need to
be addressed in real-world scenario. First, the clinical guideline for liver tumor
diagnosis [12] recommends that a liver DCE-CT includes arterial, venous, and
delayed phases. However, in practice, the delayed phase is not always scanned.
This is partially because delayed phase prolongs scan duration, and many liver
tumors are found in abdominal DCE-CTs not specially designed for liver, thus
do not include delayed phases. Most existing algorithms neglected the delayed
phase [20,16,23,14], resulting in the omission of valuable information for diag-
nosis. Second, most existing algorithms only considered common lesion types.
Meanwhile, in practice there are numerous less common tumor types that hold
significant clinical importance as well and need to be differentiated from the
common ones. These rare lesions may present with imaging features similar to
other types of liver tumors, or they might occur infrequently, resulting in a lack
of ample data for effective training and recognition.
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To address these problems, we propose a precise LIver tumor DIAgnosis
network for multi-phase contrast-enhanced CTs, named LIDIA. LIDIA itera-
tively fuses all available CT phases to comprehensively capture and analyze the
characteristics of lesions at different time points. Additionally, we introduce an
asymmetric contrastive learning approach to address the heterogeneity of in-
determinate categories and rare lesions in real-world scenarios. To verify the
effectiveness of LIDIA, we collected a large-scale contrast-enhanced CT dataset
with 1921 patients, 2/3 of them with the delayed phase. 8,138 lesions of 8 classes
were comprehensively annotated. Besides 7 common tumor classes, there is an
“others” class including more than 20 relatively rare tumor types. LIDIA can not
only effectively fuse multi-phase CT under incomplete phase conditions, but also
accurately differentiate rare lesion types from common types. It achieves a mean
classification AUC of 93.6%, outperforming the widely used baseline models. We
also test LIDIA on an external cohort of 828 patients and achieve a mean AUC
of 89.3%, showing good generalization ability.

2 Method

2.1 Preliminaries

Problem Definition. We define our liver tumor diagnosis task as follows. Let
P = {NC,A,V,D} denote images of the non-contrast, arterial, venous, and de-
layed phases, respectively. Consider a dataset D composed of N patient cases,
with each case containing multi-phase CT images X = {xNC,xA,xV, [xD]}.
Here, the delayed phase image xD is optionally included, as denoted by the brack-
ets, to reflect its potential unavailability. Each case is paired with K instance-
level lesion masks {Sj}Kj=1 and the corresponding lesion classifications {Cj}Kj=1.
Note that K is the number of tumors of each case and may be different among
cases. The objective is to develop a model f : X → ({Sj}Kj=1, {Cj}Kj=1) that
utilizes the multi-phase images X to accurately predict the lesion masks and
their associated classes. This model must be designed to effectively utilize the
all available phases to accurately identify the lesions and predict the correct class
of each lesion, accommodating the scenario in which the delayed phase may not
be available for all cases.
Mask Transformer. Recently, mask transformers have been proposed for var-
ious segmentation tasks. Rather than performing per-pixel classification as in
traditional semantic segmentation methods, they predict a set of binary masks
and assigns a class label to each mask, enabling instance segmentation [4,3,22].
An example is Mask2Former [3], which uses a pixel encoder-decoder to gen-
erate multi-scale features and employs learnable embeddings as object queries.
These queries interact with image features as well as themselves through a trans-
former decoder to segment objects and also identify their classes. Benefiting
from the masked attention mechanism, this approach allows the transformer
block to concentrate on specific local regions where tumors are situated, making
Mask2Former particularly effective for the segmentation and diagnosis of lesions,
which are often small in size.
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2.2 Liver tumor diagnosis network (LIDIA)
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Fig. 1. Illustration of the overall framework of LIDIA.

We build LIDIA based on Mask2Former and introduce two key enhance-
ments. First, we propose a multi-phase iterative fusion module, designed to han-
dle multi-phase input and potential phase incompleteness. Second, we introduce
an asymmetric contrastive learning loss to promote the discrimination between
tumor types, especially for rare types. We also make a series of improvements in
the training and inference procedure to enhance the robustness and accuracy of
LIDIA. Our framework is shown in Fig. 1.
Iterative Fusion Module (IFM). In clinical workflows, physicians often de-
termine the type of lesions based on the differences in features of lesion regions
of interest (ROIs) across various phases. Inspired by this practice, to effectively
utilize the complementary information between different phases, we first pro-
pose an iterative multi-phase fusion module. Formally, the specific information
extraction for each phase can be defined as a function mapping from the phase
image to feature map:

hp = Fp(x
p) ∈ RC , p ∈ P, (1)

where Fp represents the context-specific block for phase p, and hp is the resul-
tant feature map for that phase with C channels. The feature extraction layer is
comprised of two convolutional blocks, each employing 3D convolutions, instance
normalization, and LeakyReLU activations to progressively extract information.
Then, to effectively aggregate multi-phase information, we perform the fusion of
information following the temporal sequence of the phases. Specifically, we fuse
them in the order of non-contrast, arterial, venous, and delayed phases. The fu-
sion process iteratively incorporates feature maps from each phase p into a fused
feature hfuse. The fusion operation is performed by concatenating the current
fused hfuse with the feature of the next phase hi and applying the convolutional
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block Fconv to extract new features. This is mathematically represented by the
following recursive equation:

hfuse
k+1 = Fconv(concat(h

fuse
k ,h)) ∈ RC , h ∈ {hp}p∈P , k ∈ {1, 2, 3}, (2)

where hfuse
1 = hNC and hfuse

k represents the fused feature after incorporating

the k-th subsequent phase’s feature. The final fused feature is hfuse
4 if delayed

phase is present and hfuse
3 if not. This process provides a way to adaptively in-

corporate variable phase numbers. It is able to capture dynamic contrast changes
among phases similar to ConvLSTM [17], while being more lightweight.
Asymmetric Contrastive Learning (ACL). To increase intra-class compact-
ness and inter-class discriminability for liver tumors, we propose an asymmetric
contrastive loss for the embedding of lesions, denoted as Lacl. The liver contains
numerous rare lesion types that are underrepresented (typically less than 10
samples in our dataset). It is impractical to assign each rare type as a separate
class because the network could not effectively learn given such few samples, so
we collectively assign as them as the “others” class. The ordinary supervised
contrastive loss applies a uniform attraction within each class and repulsion be-
tween any two distinct classes, treating all classes equally. Due to the inherent
heterogeneity of “others” class, clustering them using ordinary supervised con-
trastive loss would limit the model’s flexibility when dealing with unseen lesions
or those with similar appearances. On the other hand, we differentiates between
common and rare lesions: Lacl only performs attraction within each common
class and repulsion among common classes; while for samples within the “oth-
ers” class, we do not try to cluster them together, but instead only keep them
distant from the common classes. The original supervised contrastive loss can
be represented by the following equation:

L = Ex∈I [L(x)], (3)

where

L(x) =
∑

p∈P(x)

− 1

|P(x)|
log

exp(z(x)T z(p)/τ)∑
a∈A(x)

exp(z(x)T z(a)/τ)
. (4)

Here, z(x) is a non-linear projection function. P(x) is the set of positive samples
with the same label as x. A(x) is the set of all contrastive samples with respect
to x, and I is the set of training samples.

For common lesions, we perform intra-class attraction and inter-class repul-
sion using Eq. (4). For rare lesions, we simply push them away from the common
classes; hence, there is no attraction amongst positive samples. Therefore, the
contrastive loss becomes:

L(xr) = log
∑

a∈Ac(xr)

exp(z(xr)
T z(a)/τ), (5)

where Ac(xr) represents the set of common lesion samples with respect to xr.
Specifically, we project the object queries into an additionally embedding space
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to conduct above process. Meanwhile, to increase the sample size for contrastive
learning, we perform cross-batch contrast via maintaining a memory bank.
Training and Inference. Our task includes binary mask prediction and lesion
type classification. For mask prediction, we employ a hybrid loss function, Lseg,
which combines Cross-Entropy (CE) loss with Dice loss. Similar to [16], we adopt
a foreground-enhanced sampling strategy when computing Lseg, which increases
the ratio of foreground pixels in the loss calculation, improving the recall of small
lesions.For lesion type classification, due to the class imbalance issue present
among liver lesions, we employ focal loss Lfocal [11] instead of the CE loss in [3]
to enhance the learning focus on the underrepresented classes. Therefore, the
final loss function is expressed as a combination of above loss, mathematically
represented as

Lfinal = λ1Lseg + λ2Lfocal + λ3Lacl. (6)

Liver lesion classification faces the challenge of different tumors can present sim-
ilar features while small lesions in segmentation tasks are easily missed due to
their size. Therefore, when updating the model, we employ the sharpness aware
minimization strategy [6], which seeks weights that demonstrate low sensitivity
to input noises. This leads to more robust predictions, especially for subtle or
ambiguous features, thereby improving the model’s performance on both classi-
fication and segmentation of lesions.

In the inference stage, our goal extends beyond achieving lesion-wise detec-
tion and pixel-wise segmentation. We also aim to obtain patient-wise diagnostic
results, i.e. the overall probability of the patient having each type of tumor. To
achieve this goal, Zhu et al. [24] suggested utilizing the size of the predicted lesion
mask to infer the patient-level diagnosis. However, this method fails to consider
the confidence of the mask prediction and tends to neglect small lesions. Yan
et al. [16] adopted an additional network branch for patient-level classification,
which is prone to overfitting compared to pixel-wise predictions. In this work,
we propose a simple yet effective approach called LiverMax to obtain patient-
wise diagnosis probabilities from pixel-wise segmentation probabilities. We take
the softmax output of the semantic segmentation result of LIDIA, compute the
maximum value of each channel (tumor type) from all voxels inside the liver,
and get the probability of the patient having each type of tumor. This strategy
outperforms the previous strategies in our experiments.

3 Experiments

Dataset. We established a CT dataset comprising 1921 patients with 8,138
liver tumors annotated. Each patient underwent dynamic contrast-enhanced CT
scans, with all patients having non-contrast (NC), arterial, and venous phases.
2/3 of them have delayed phase images. We registered all phases to the venous
phase using DEEDS [7]. Then, we invited a senior radiologist with 10 years of ex-
perience to delineate the tumors and annotate the types of all liver tumors based
on pathological reports, imaging signs of CT and MRI, and follow-up informa-
tion. Our study encompasses seven common types of liver lesions: hepatocellular
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carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), metastases (meta),
hemangioma (heman), focal nodular hyperplasia (FNH), calcification (calc) and
cyst. Additionally, we created a separate category for other rare lesions, which
includes over 20 uncommon lesion types with each type typically fewer than 10
samples. We split the dataset into three subsets: 1305 samples for training, 298
for validation, and 318 for testing.
Implementation Details. LIDIA is built upon of the nnU-Net [9] framework.
The pixel-encoder is based on the encoder from the U-Net architecture, but
the first layer have been replaced with IFM. For the decoder, LIDIA employs a
Feature Pyramid Network. LIDIA is configured with 50 learnable queries. As for
the loss weights, λ1 = 5, λ2 = 5, and λ3 = 0.01. Additionally, the temperature
is set as 0.1, and the memory bank size is set as 1024. During training, we use
a batch size of 2, a learning rate of 1e-5, and train the model for 1000 epochs.

3.1 Experimental results

Comparisons with other methods. We compare our proposed method with
the widely-used robust baseline, nnU-Net [9]. Mask2Former [3] achieved out-
standing accuracy in instance segmentation of natural objects, thus we adapted
it for 3D data and included it in the comparison. PLAN [16] is a latest in-
stance segmentation framework specially designed for liver tumor diagnosis. For
nnU-Net and Mask2Former, patient-level results are inferred by counting the
number of lesion pixels in their predicted masks as described in [24]. We report
the patient-wise diagnosis (AUC-8: mean AUC of 8 tumor types; AUC-2: mean
AUC of malignant and benign classification), lesion-wise detection (precision,
sensitivity, and lesion classification accuracy), and pixel-wise lesion segmenta-
tion metrics in Table 1.
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HCC ICC Meta Heman FNH Cyst Calc Others Mean
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Fig. 2. Illustration of AUC for all classes on an external cohort.

Firstly, LIDIA achieves the highest patient-wise AUC, which are the primary
metric of focus in this work that are important for clinical diagnosis. For lesion-
wise classification, LIDIA achieves the highest accuracy. The segmentation ac-
curacy of all methods are comparable. To evaluate the generalizability of LIDIA,
we test its performance on an independent external cohort. As shown in Fig. 2,
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Table 1. Comparisons with several state-of-the-art methods on the internal cohort.

Method
Patient-wise Lesion-wise Pixel-wise

AUC-8 AUC-2 Prec. Sens. Acc. Dice

nn-UNet [9] 0.822 0.915 0.909 0.854 0.8575 0.873
Mask2Former [3] 0.841 0.895 0.832 0.861 0.8658 0.875

PLAN[16] 0.905 0.878 0.907 0.886 0.8699 0.869
LIDIA 0.936 0.946 0.886 0.866 0.8812 0.869

Table 2. Comparison of the performance of various multi-phase fusion methods.

Method HCC ICC Meta Heman FNH cyst calc others Mean

Baseline nnU-Net 0.907 0.728 0.884 0.973 0.866 0.955 0.500 0.762 0.822
HEMIS [5] 0.900 0.749 0.899 0.945 0.832 0.948 0.500 0.808 0.823

ConvLSTM [17] 0.890 0.715 0.890 0.972 0.900 0.935 0.500 0.781 0.823
IFM 0.913 0.757 0.899 0.961 0.902 0.956 0.500 0.815 0.838

Table 3. Ablation study. IFM: iterative fusion module, ACL: asymmetric contrastive
learning, SAM: sharpness-aware minimization

Method HCC ICC Meta Heman FNH cyst calc others Mean

Baseline 0.861 0.711 0.857 0.935 0.797 0.880 0.790 0.753 0.823
+Focal Loss 0.880 0.696 0.882 0.909 0.799 0.926 0.897 0.736 0.841
+LiverMax 0.934 0.853 0.947 0.974 0.968 0.942 0.912 0.826 0.919

+IFM 0.941 0.846 0.940 0.975 0.953 0.943 0.958 0.846 0.925
+ACL 0.954 0.845 0.948 0.973 0.966 0.946 0.937 0.856 0.928

+SAM(LIDIA) 0.951 0.850 0.951 0.979 0.970 0.948 0.963 0.874 0.936

our method achieved optimal performance in almost all lesions, indicating good
generalization capability. In summary, LIDIA achieves the highest diagnosis ac-
curacy. We will display qualitative examples and lesion-wise confusion matrix in
the Appendix.

Effect of iterative fusion module. We used nn-UNet with three input phases
(discarding the delayed phase) as the baseline method and compared the perfor-
mance of various phase fusion approaches, where the AUC was calculated using
the method described in [24]. The advantages of IFM are particularly evident
across various lesions, including HCC, ICC, cysts, and “others”. All methods
except baseline nnU-Net can accept variable number of input phases and thus
take advantage of the complete phase information (including delayed phase), yet
IFM achieves better performance.

Ablation study. As shown in Table 3, focal loss is beneficial for improving
the underrepresented calc class samples. LiverMax effectively confines the fore-
ground within the liver region, significantly reducing false positives and thereby
increasing accuracy. Moreover, IFM efficiently exploits multi-phase information,
substantially enhancing performance in heterogeneous categories such as HCC
and others. Lastly, with the regularization and optimization methods, ACL and
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SAM, LIDIA achieves the highest average AUC of 93.6%. The findings from the
ablation study clearly demonstrate the efficacy of our individual modules.

4 Conclusion

In this work, we introduce an effective approach to fuse multi-phase liver CT im-
ages to address the incomplete phase issue. Moreover, to minimize the impact of
liver tumor heterogeneity on the model’s classification performance, we propose
an asymmetric contrastive loss. Our comprehensive evaluation on a large-scale
dataset and external test set confirms the efficacy, generalizability, and clinical
significance of our method.
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