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Abstract. Accurate medical image segmentation demands the integra-
tion of multi-scale information, spanning from local features to global
dependencies. However, it is challenging for existing methods to model
long-range global information, where convolutional neural networks are
constrained by their local receptive fields, and vision transformers suf-
fer from high quadratic complexity of their attention mechanism. Re-
cently, Mamba-based models have gained great attention for their im-
pressive ability in long sequence modeling. Several studies have demon-
strated that these models can outperform popular vision models in var-
ious tasks, offering higher accuracy, lower memory consumption, and
less computational burden. However, existing Mamba-based models are
mostly trained from scratch and do not explore the power of pretraining,
which has been proven to be quite effective for data-efficient medical im-
age analysis. This paper introduces a novel Mamba-based model, Swin-
UMamba, designed specifically for medical image segmentation tasks,
leveraging the advantages of ImageNet-based pretraining. Our experi-
mental results reveal the vital role of ImageNet-based training in enhanc-
ing the performance of Mamba-based models. Swin-UMamba demon-
strates superior performance with a large margin compared to CNNs,
ViTs, and latest Mamba-based models. Notably, on AbdomenMRI, En-
coscopy, and Microscopy datasets, Swin-UMamba outperforms its closest
counterpart U-Mamba by an average score of 2.72%. The code and mod-
els of Swin-UMamba are publicly available at: https://github.com/Jiarun-
Liu/Swin-UMamba.
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1 Introduction

Medical image segmentation plays an important role in modern clinical practice
such as assisting in diagnoses, formulating treatment plans, and implementing
therapies [2,20,27]. In recent years, deep learning has made significant advance-
ments in this field [23,31,6,11] to enhance efficiency, accuracy, and consistency
in medical image analysis to make accurate and rapid diagnoses [26,14]. How-
ever, accurate medical image segmentation requires integrating local features
with their corresponding global dependencies [24]. It is still challenging to ef-
ficiently capture complex and long-range global dependencies from image data
[22,30]. Convolutional neural networks (CNNs) such as U-Net [23], nnU-Net [11],
and SegResNet [21] are commonly employed in medical image segmentation.
They are effective at extracting local features but may struggle with capturing
global context and long-range dependencies. This is because CNNs are inher-
ently limited by their local receptive fields [17], which restrict their ability to
capture information from distant regions in the image. On the other hand, vision
transformers (ViTs) have shown the capability in handling global context and
long-range dependencies [10]. However, ViTs are constrained by their attention
mechanism, suffering from high quadratic complexity for long sequences mod-
eling [4], where high-resolution images are not rare in the medical domain (e.g.
whole-slide pathology images, high-resolution MRI/CT scans). Despite the com-
plexity, transformers are prone to overfitting when dealing with limited datasets
[15], indicating their data-hungry nature.

Recently, Mamba [4] has demonstrated its efficiency and effectiveness in long-
range dependency modeling. Compared with transformers, Mamba scales lin-
early or near-linearly with sequence length while maintaining the capability of
modeling long-range dependencies, offering higher accuracy, lower memory con-
sumption, and less computational burden [33]. Several latest studies [18,33,16,29]
have preliminarily explored the effectiveness of Mamba in vision tasks. For in-
stance, Vim [33] proposed a generic vision backbone with bidirectional Mamba
blocks, while VMamba [16] introduced a cross-scan module to solve the direction-
sensitive problem due to the difference between 1D sequences and 2D images.
For medical image segmentation, U-Mamba [18] and SegMamba [29] proposed
a task-specific architecture with the Mamba block based on nnU-Net [11] and
Swin-UNETR [8], respectively.

Although remarkable performance has been accomplished with these efforts,
existing Mamba-based models are mostly trained from scratch. The impact of
pretraining for the Mamba-based model in medical image segmentation tasks
remains unclear, which has been proven to be quite effective for data-efficient
medical image analysis with CNNs [6] and ViTs [7]. This is particularly impor-
tant in the field of medicine, where medical image datasets are often limited in
size and diversity [28]. Understanding the effectiveness of pretraining Mamba-
based models in medical image segmentation can offer valuable insights into
enhancing the performance of deep learning models in medical imaging applica-
tions. However, prior research [18] typically employs a specific architecture with
Mamba blocks, which fails to consider the transferability from generic vision
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models. Consequently, the network structure requires redesigning to integrate
the pretrained model. Given the fact that the application of Mamba in vision
is relatively new, further experimental evaluation is required. Moreover, there
is a need for the scalability and efficiency of Mamba-based models for real-
world deployment [32], particularly in resource-constrained environments, which
is commonly found in medical practice.

In this paper, we proposed a Mamba-based network Swin-UMamba for 2D
medical image segmentation. Swin-UMamba uses a generic encoder to integrate
the power of the pretrained vision model with a well-designed decoder for med-
ical image segmentation. In addition, we proposed a variant structure Swin-
UMamba† with a Mamba-based decoder, providing fewer parameters and lower
FLOPs for efficient applications while maintaining competitive performance. Our
contribution can be summarized as follows:

– To the best of our knowledge, we are the first attempt to discover the impact
of pretrained Mamba-based networks in medical image segmentation. Our
experiment verified that ImageNet-based pretraining plays an important role
in medical image segmentation for Mamba-based networks, which sometimes
is crucial.

– We propose two Mamba-based networks Swin-UMamba and Swin-UMamba†
for medical image segmentation, which are particularly designed to unify the
power of pretrained models with different computation requirements towards
real-world deployment.

– Our results show that both Swin-UMamba and Swin-UMamba† can outper-
form previous segmentation models including CNNs, ViTs, and the latest
Mamba-based models with notable margin, highlighting the effectiveness of
ImageNet-based pretraining and proposed architecture in medical image seg-
mentation tasks.

2 Method

We illustrate the overall architecture of Swin-UMamba in Fig. 1. It is mainly
composed of 1) a Mamba-based encoder that was pretrained on the large-scale
dataset (i.e. ImageNet) to extract features at different scales, 2) a decoder with
several up-sample blocks for predicting segmentation results, and 3) skip connec-
tions to bridge the gap between low-level details and high-level semantics. We
will introduce the detailed structure of Swin-UMamba in the following sections.

2.1 Mamba-based VSS block

Mamba [4] using space state sequential models (SSMs) [5] to reduce the complex-
ity of attention from quadratic to linear for long-sequence modeling in natural
language processing. However, the distinction between 2D visual data and 1D
language sequences requires careful consideration when adapting Mamba to vi-
sion tasks. For instance, while 2D spatial information is crucial in vision tasks
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Fig. 1. The overall architecture of Swin-UMamba. Swin-UMamba can leverage the
power of vision foundation models by loading the weights of pretrained models. Each
block within the blue box was initialized with the ImageNet pretrained weights.

[16], it is not the primary focus in 1D sequence modeling. Directly adopting
Mamba to flattened images would inevitably result in restricted receptive fields,
where the relationships against unscanned patches could not be estimated.

Building upon the insights from [16], we incorporate the visual state space
(VSS) block as the basic unit in Swin-UMamba. The VSS block addresses the
challenges associated with 2D image data by employing 2D-selective-scan (SS2D)
based on the selective scan space state sequential model (S6). Given input feature
z, the output feature z̄ of SS2D can be written as:

zv = expand(z, v) (1)
z̄v = S6(zv) (2)
z̄ = merge(z̄1, z̄2, z̄3, z̄4) (3)

where v ∈ V = {1, 2, 3, 4} is four different scanning directions. expand(·) and
merge(·) corresponding to the scan expand and scan merge operations in [16].
S6 enables each element in a 1D array (e.g., text sequence) to interact with any
of the previously scanned samples through a compressed hidden state. We refer
to [16] for further details about S6. The overall structure of the VSS block is
illustrated in Fig. 1.

2.2 Integrating ImageNet-based pretraining

The primary challenge lies in effectively integrating generic pretrained models
into the segmentation task. To this end, we construct an encoder that shares a
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similar structure with VMamba-Tiny [16], which was pretrained on the extensive
ImageNet dataset. It allowed us to integrate the power of the generic vision
model to extract information with long-range modeling capability, mimic the
risk of overfitting, and establish a robust initialization for Swin-UMamba.

As illustrated in Fig. 1, the encoder of Swin-UMamba can be divided into 5
stages. The first stage is a convolution layer for 2× down-sampling. It differs from
VMamba because we prefer a gradual down-sampling process to retain low-level
details, which is important for medical image segmentation [23,25]. Subsequent
stages follow the design of VMamba-Tiny, where each stage is composed of a
patch merging layer for 2× down-sampling and several VSS blocks to process
high-level features. Specifically, the patch merging layer in stage 2 was replaced
by a 2×2 patch embedding layer. The number of VSS blocks and feature dimen-
sions at each stage are {0, 2, 2, 9, 2} and D = {48, 96, 192, 384, 768}, respectively.
We initialize the VSS blocks and patch merging layers with the ImageNet pre-
trained VMamba-Tiny.

2.3 Swin-UMamba decoder

The decoder of Swin-UMamba follows the commonly used U-shaped architecture.
As illustrated in Fig. 1, Swin-UMamba uses an up-sample block with 1) an extra
convolution block with a residual connection to process skip connection features,
and 2) an additional segmentation head at each scale for deep supervision [13].
Given skip-connected feature z′l from stage-l and feature zl+1 from the last up-
sample block, the output feature zl and the segmentation map yl at stage-l can
be formulated as follows:

ẑl = Res
(2)
l (Cat(zl+1, Res

(1)
l (z′l))) (4)

zl = DeConvl(ẑl), yl = Convl(ẑl) (5)

where Cat(·), DeConvl(·), Convl(·) are the feature concatenation operation,
transpose convolution, and 1×1 convolution, respectively. Res

(1)
l (·) and Res

(2)
l (·)

are two convolution blocks with residual connection at stage-l, each Res(·) was
composed of two convolution layers with LeakyRELU activation. We use 1 × 1
convolution to project the feature map dimension dl into class number K for the
final segmentation output.

2.4 Swin-UMamba†: Swin-UMamba with Mamba-based decoder

To further explore the potential of Mamba in medical semantic segmentation,
we proposed a variant Swin-UMamba† with a Mamba-based decoder, which can
exhibit decent performance with largely reduced complexity.

Several modifications were made on Swin-UMamba†. First, the up-sample
block was replaced by 2× patch expanding layer [3] and two VSS blocks. We
found that many parameters and computation burdens were caused by the heavy
CNN-based decoder. Second, we changed the encoder back to the original design
of VMamba and then removed corresponding skip connections and redundant
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Table 1. Dataset information. We follow [18] to perform data processing. Dim indicates
the dimension of the processed data in our experiment.

Dataset Dim #Training #Testing #Targets Crop size Epochs

AbdomenMRI[12] 2D 5615 3357 13 (320, 320) 100
Endoscopy[1] 2D 1800 1200 7 (384, 640) 350

Microscopy[19] 2D 1000 101 2 (512, 512) 450

up-sample blocks. The last patch expanding layer in the decoder is 4× up-sample
operation, mirroring the 4× patch embedding layer. Deep supervision was ap-
plied at resolutions of {1×, 1

4×, 1
8×, 1

16×} as there is no feature at 1
2× scale.

Combining all these modifications, the number of network parameters was re-
duced from 60M to 27M, and the FLOPs were decreased from 68.0G to 18.9G
on the AbdomenMRI dataset. Further details of Swin-UMamba† can be found
in the supplementary material.

3 Experiments

3.1 Datasets

We evaluate the performance and scalability of Swin-UMamba across three dis-
tinct medical image segmentation datasets, encompassing AbdomenMRI [12]
(abdominal organs), Endoscopy [1] (instruments), and Microscopy [19] (cell).
These datasets are selected across various resolutions and image modalities. We
list the information of these datasets in Table 1. The data processing strategy
in our experiment was following [18] during training and testing.

3.2 Implemetation details

We implemented Swin-UMamba on top of the well-established nnU-Net frame-
work [11]. The loss function is the sum of Dice loss and cross-entropy loss and we
perform deep supervision [13] at each scale. We use an AdamW optimizer with
weight decay = 0.05 following [16]. A cosine learning rate decay was adopted with
an initial learning rate = 0.0001. We use the ImageNet pretrained VMamba-Tiny
model to initialize Swin-UMamba for all datasets. During training, we froze all
pretrained parameters for the first 10 epochs to align other modules. Following
[18], we disabled the testing time argumentation for a more streamlined and
efficient evaluation. For more details, please refer to our code implementation.7.

3.3 Baselines and evaluation metrics

We select three types of methods as baseline methods for comprehensive evalu-
ation, including CNN-based (nnU-Net [11], SegResNet [21]), transformer-based

7 https://github.com/JiarunLiu/Swin-UMamba

https://github.com/JiarunLiu/Swin-UMamba
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Table 2. Segmentation results on AbdomenMRI, Endoscopy, and Microscopy (Micro)
dataset. The results of nnU-Net, SegResNet, UNETR, SwinUNETR, and U-Mamba
were referenced from [18]. The number of parameters (param) and FLOPs were com-
puted on the AbdomenMRI dataset. Further results with standard deviation can be
found in the supplementary material. ∗: Deep supervision was disabled and we extend
the training epochs to 200.

Dataset param FLOPs AbdomenMRI Endoscopy Micro AVGMetric DSC NSD DSC NSD F1

CNN-based
nnU-Net 33M 23.3G 0.7450 0.8153 0.6264 0.6412 0.5383 0.6732
SegResNet 6M 24.5G 0.7317 0.8034 0.5820 0.5968 0.5411 0.6510

Transformer-based
UNETR 87M 42.1G 0.5747 0.6309 0.5017 0.5168 0.4357 0.5320
SwinUNETR 25M 27.9G 0.7028 0.7669 0.5528 0.5683 0.3967 0.5975
nnFormer 60M 50.2G 0.7297 0.7963 0.6135 0.6228 0.5332 0.6591

Mamba-based
U-Mamba_Bot 63M 45.7G 0.7588 0.8285 0.6540 0.6692 0.5389 0.6899
U-Mamba_Enc 67M 49.9G 0.7625 0.8327 0.6303 0.6451 0.5607 0.6863

w/o ImageNet-based pretraining
Swin-UMamba 60M 68.0G 0.7054 0.7647 0.5483 0.5632 0.4561 0.6075
Swin-UMamba† 28M 18.9G 0.6653∗ 0.7312∗ 0.6402 0.6547 0.5186 0.6420

w/ ImageNet-based pretraining
Swin-UMamba 60M 68.0G 0.7760 0.8421 0.6767 0.6922 0.5806 0.7135
Swin-UMamba† 28M 18.9G 0.7705 0.8376 0.6783 0.6933 0.5982 0.7156

(UNETR [9], Swin-UNETR [8], nnFormer [31]), and the latest Mamba-based
segmentation network U-Mamba [18]. It’s worth noting that adopting the pre-
trained model into U-Mamba is not straightforward due to structural differences
from the pretrained model [16]. We report the results of nnFormer [31] based on
official implementation and the other baseline results were referenced from [18].
Dice similarity coefficient (DSC) and normalized surface distance (NSD) were
used to evaluate segmentation performance on the AbdomenMRI and Endoscopy
datasets. For the Microscopy dataset, we use the F1 score following [18].

3.4 Overall performance

Table 2 presents the segmentation performance on three segmentation datasets.
Swin-UMamba and Swin-UMamba† outperform all baseline methods, including
CNN-based networks, transformer-based networks, and the Mamba-based net-
works. The superior result demonstrates the great potential of the Mamba-based
network in medical image segmentation. Swin-UMmaba and Swin-UMamba†
exhibit a remarkable 2.72% and 2.93% improvement over U-Mamba_Enc in
average score. Somewhat surprisingly, we observed that Swin-UMamba† out-
performs Swin-UMamba on Endoscopy and Microscopy dataset. One possible
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Fig. 2. Result visualization on a) AbdomenMRI, b) Endoscopy, and c) Microscopy.

reason is that Swin-UMamba† has fewer network parameters, making it more
robust to small datasets. Besides, Swin-UMamba† exhibits a significantly lower
computation burden with the lowest FLOPs among all baseline models. These
competitive results demonstrate the potential of the pure Mamba-based network
in settings with higher image resolution and limited samples. Fig. 2 shows that
Swin-UMamba can accurately recognize target regions.

3.5 The impact of ImageNet-based pretraining

ImageNet-based pretraining shows a crucial role in our experiments, leading to
a significant 10.60% average score improvement for Swin-UMamba. This im-
provement is consistent over different network structures and datasets, since
Swin-UMamba† also benefits 7.36% in average score by using ImageNet-based
pretraining. It is an effective strategy for mitigating overfitting in small datasets.
Swin-UMamba can benefit over 10% on the relatively small Endoscopy and
Microscopy datasets. Moreover, ImageNet-based pretraining facilitates faster
and more stable training, requiring merely one-tenth of the training iterations
compared to baseline methods on the AbdomenMRI dataset. A drastic phe-
nomenon is observed with Swin-UMamba† on the AbdomenMRI dataset. With-
out ImageNet-based pretraining, Swin-UMamba† fails to converge properly on
this dataset with default settings. To address this issue, we disable the deep
supervision of Swin-UMamba† in this case. Despite that, Swin-UMamba† out-
performs all baseline methods when utilizing the ImageNet pretrained weights.
This improvement is particularly noteworthy considering that Swin-UMamba†
has less than half of the network parameters and FLOPs compared to U-Mamba.

4 Conclusion

This study aims to reveal the impact of ImageNet-based pretraining for Mamba-
based models in 2D medical image segmentation. We proposed a novel Mamba-
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based model, Swin-UMamba, and its variant, Swin-UMamba†, both capable of
leveraging the power of pretrained models for segmentation tasks. Our experi-
ments on various medical image segmentation datasets suggest that ImageNet-
based pretraining for Mamba-based models offers several advantages, including
superior segmentation accuracy, stable convergence, mitigation of overfitting is-
sues, data efficiency, and lower computational resource consumption. We believe
that our findings highlight the importance of pretraining in enhancing the per-
formance and efficiency of Mamba-based models in vision tasks.

Acknowledgments. This research was partly supported by the National Key R&D
Program of China (2023YFA1011400), National Natural Science Foundation of China
(62222118, U22A2040), Guangdong Provincial Key Laboratory of Artificial Intelligence
in Medical Image Analysis and Application (2022B1212010-011), Shenzhen Science
and Technology Program (RCYX20210706092104034, JCYJ20220531100213029), the
major key project of Peng Cheng Laboratory under grant PCL2023AS1-2, Key Lab-
oratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province
(2023B1212060052), and Youth Innovation Promotion Association CAS.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Allan, M., Shvets, A., Kurmann, T., Zhang, Z., Duggal, R., Su, Y.H., Rieke, N.,
Laina, I., Kalavakonda, N., Bodenstedt, S., et al.: 2017 robotic instrument segmen-
tation challenge. arXiv preprint arXiv:1902.06426 (2019)

2. Bai, W., Suzuki, H., Huang, J., Francis, C., Wang, S., Tarroni, G., Guitton, F.,
Aung, N., Fung, K., Petersen, S.E., et al.: A population-based phenome-wide asso-
ciation study of cardiac and aortic structure and function. Nature medicine 26(10),
1654–1662 (2020)

3. Cao, H., Wang, Y., Chen, J., Dongsheng Jiang, Zhang, X., Tian, Q., Wang, M.:
Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Com-
puter Vision – ECCV 2022 Workshops. pp. 205–218 (2023)

4. Gu, A., Dao, T.: Mamba: Linear-time sequence modeling with selective state
spaces. arXiv preprint arXiv:2312.00752 (2023)

5. Gu, A., Goel, K., Re, C.: Efficiently modeling long sequences with structured state
spaces. In: International Conference on Learning Representations (2021)

6. Guo, J., Zhou, H.Y., Wang, L., Yu, Y.: UNet-2022: Exploring dynamics in non-
isomorphic architecture. In: Medical Imaging and Computer-Aided Diagnosis. pp.
465–476. Springer Nature (2023)

7. Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu,
C., Xu, Y., et al.: A survey on vision transformer. IEEE transactions on pattern
analysis and machine intelligence 45(1), 87–110 (2022)

8. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR:
Swin transformers for semantic segmentation of brain tumors in MRI images. In:
International MICCAI Brainlesion Workshop. pp. 272–284. Springer (2021)

9. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B.,
Roth, H.R., Xu, D.: UNETR: Transformers for 3d medical image segmentation.



10 L. Jiarun et al.

In: Proceedings of the IEEE/CVF winter conference on applications of computer
vision. pp. 574–584 (2022)

10. Hatamizadeh, A., Yin, H., Heinrich, G., Kautz, J., Molchanov, P.: Global context
vision transformers. In: International Conference on Machine Learning. pp. 12633–
12646. PMLR (2023)

11. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature methods 18(2), 203–211 (2021)

12. Ji, Y., Bai, H., GE, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhanng, L., Ma,
W., Wan, X., Luo, P.: AMOS: A large-scale abdominal multi-organ benchmark
for versatile medical image segmentation. In: Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (2022)

13. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In:
Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics. pp. 562–570. PMLR (2015), ISSN: 1938-7228

14. Li, C., Li, W., Liu, C., Zheng, H., Cai, J., Wang, S.: Artificial intelligence in
multiparametric magnetic resonance imaging: A review. Medical Physics 49(10),
e1024–e1054 (2022)

15. Lin, T., Wang, Y., Liu, X., Qiu, X.: A survey of transformers. AI Open (2022)
16. Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., Ye, Q., Liu, Y.: VMamba:

Visual state space model. arXiv preprint arXiv:2401.10166 (2024)
17. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field

in deep convolutional neural networks. Advances in neural information processing
systems 29 (2016)

18. Ma, J., Li, F., Wang, B.: U-mamba: Enhancing long-range dependency for biomed-
ical image segmentation. arXiv preprint arXiv:2401.04722 (2024)

19. Ma, J., Xie, R., Ayyadhury, S., Ge, C., Gupta, A., Gupta, R., Gu, S., Zhang, Y.,
Lee, G., Kim, J., et al.: The multi-modality cell segmentation challenge: towards
universal solutions. arXiv preprint arXiv:2308.05864 (2023)

20. Mei, X., Lee, H.C., Diao, K.y., Huang, M., Lin, B., Liu, C., Xie, Z., Ma, Y., Robson,
P.M., Chung, M., et al.: Artificial intelligence–enabled rapid diagnosis of patients
with COVID-19. Nature medicine 26(8), 1224–1228 (2020)

21. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regular-
ization. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries. pp. 311–320 (2019)

22. Qi, K., Yang, H., Li, C., Liu, Z., Wang, M., Liu, Q., Wang, S.: X-Net: Brain stroke
lesion segmentation based on depthwise separable convolution and long-range de-
pendencies. In: Medical Image Computing and Computer Assisted Intervention –
MICCAI 2019. pp. 247–255 (2019)

23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015. pp. 234–241 (2015)

24. Sinha, A., Dolz, J.: Multi-scale self-guided attention for medical image segmenta-
tion. IEEE Journal of Biomedical and Health Informatics 25(1), 121–130 (2021)

25. Sun, H., Li, C., Liu, B., Liu, Z., Wang, M., Zheng, H., Feng, D.D., Wang, S.:
AUNet: attention-guided dense-upsampling networks for breast mass segmentation
in whole mammograms. Physics in Medicine & Biology 65(5), 055005 (feb 2020)

26. Tang, H., Chen, X., Liu, Y., Lu, Z., You, J., Yang, M., Yao, S., Zhao, G., Xu, Y.,
Chen, T., et al.: Clinically applicable deep learning framework for organs at risk
delineation in CT images. Nature Machine Intelligence 1(10), 480–491 (2019)



Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining 11

27. Tang, H., Zhang, C., Xie, X.: Automatic pulmonary lobe segmentation using deep
learning. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI
2019). pp. 1225–1228. IEEE (2019)

28. Wang, S., Li, C., Wang, R., Liu, Z., Wang, M., Tan, H., Wu, Y., Liu, X., Sun, H.,
Yang, R., et al.: Annotation-efficient deep learning for automatic medical image
segmentation. Nature communications 12(1), 5915 (2021)

29. Xing, Z., Ye, T., Yang, Y., Liu, G., Zhu, L.: SegMamba: Long-range sequential mod-
eling mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560
(2024)

30. Yang, H., Huang, W., Qi, K., Li, C., Liu, X., Wang, M., Zheng, H., Wang, S.: CLCI-
Net: Cross-level fusion and context inference networks for lesion segmentation of
chronic stroke. In: Medical Image Computing and Computer Assisted Intervention
– MICCAI 2019. pp. 266–274 (2019)

31. Zhou, H.Y., Guo, J., Zhang, Y., Han, X., Yu, L., Wang, L., Yu, Y.: nnFormer:
Volumetric medical image segmentation via a 3D transformer. IEEE Transactions
on Image Processing 32, 4036–4045 (2023)

32. Zhou, Y., Huang, W., Dong, P., Xia, Y., Wang, S.: D-UNet: A dimension-fusion
u shape network for chronic stroke lesion segmentation. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 18(3), 940–950 (2021)

33. Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., Wang, X.: Vision Mamba: Efficient
visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417 (2024)


	Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining

