
MedMLP: An Efficient MLP-like Network for
Zero-shot Retinal Image Classification

Menghan Zhou1, Yanyu Xu⋆ 4, Zhi Da Soh2, Huazhu Fu1,
Rick Siow Mong GOH1, Ching-Yu Cheng2,3, Yong Liu1, Liangli Zhen1

1 The Institute of High Performance Computing (IHPC), Agency for Science,
Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis,

Singapore 138632, Republic of Singapore.
2 Singapore Eye Research Institute
3 Singapore National Eye Centre

4 The Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR),
Shandong University, Jinan, 250100, P. R. China.

Abstract. Deep neural networks (DNNs) have demonstrated superior
performance compared to humans across various tasks. However, DNNs
often face the challenge of domain shift, where their performance notably
deteriorates when applied to medical images with distributions differ-
ing from those seen during training. To address this issue and achieve
high performance in new target domains under zero-shot settings, we
leverage the ability of self-attention mechanisms to capture global de-
pendencies. We introduce a novel MLP-like model designed for superior
efficiency and zero-shot robustness. Specifically, we propose an adaptive
fully-connected (AdaFC) layer to overcome the fundamental limitation of
traditional fully-connected layers in adapting to inputs of various sizes
while maintaining GPU efficiency. Building upon AdaFC, we present
a new MLP-based network architecture named MedMLP. Through our
proposed training pipeline, we achieve a significant 20.1% increase in
model testing accuracy on an out-of-distribution dataset, surpassing the
widely used ResNet-50 model.

Keywords: Zero-shot Setting · MLP-like Network.

1 Introduction

Deep learning has achieved remarkable success in various domains, often match-
ing or even surpassing human performance in certain tasks [12,21,6,2,22]. How-
ever, the distribution gaps caused by differences in imaging devices and patients
in medical images [18,4,19] can significantly degrade the performance of deep
learning models trained on large-scale image datasets. Hence, there is an urgent
need to explore methods to achieve high performance in new target domains.

This challenge has been extensively explored by researchers, leading to several
promising solutions, including adversarial training, domain adaptation, and data
⋆ Corresponding author
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Fig. 1. Top-1 classification accuracy comparisons between the proposed MedMLP and
state-of-the-art mobile models. The x-axis denotes the inference latency and the y-
axis denotes the classification accuracy on the ImageNet validation dataset. We use
different width multipliers (including 0.5, 0.75, 1.0, and 1.4) to trade-off between the
model complexity and accuracy. MLP-like models are significantly faster than CNN-
based models. The proposed MedMLP surpasses all these models with higher accuracy.
The inference time in GPU is measured with Pytorch built-in profiler functions. More
details can be found in Sec. 3.2.

augmentation [9,16,24,8,17]. The adversarial training and domain adaptation al-
gorithms present challenges in real-world scenarios, particularly as predicting
target domain data is difficult due to the tremendous number of unknown out-
of-distribution data. Data augmentation is another line of research work. How-
ever, we’ve observed that the power of data augmentation algorithms diminishes
when dealing with limited medical domain data. Many of these methods rely
on transfer learning (TL) algorithms, which need to access to target datasets.
However, accessing the target domain data in real-world scenarios is challenging,
and additional fine-tunig of the models may be inefficient.

Recent work study on self-attention mechanisms [7,13,30,31] provides an al-
ternative solution to boost the model’s generalizability under zero-shot setting
(no access to the target domain data). In particular, self-attention mechanisms
in transformers achieve stronger robustness over conventional convolutional net-
works, indicating their essential role in improving visual recognition by capturing
global dependencies among input patches. Concurrently, MLP-like models, such
as MLP-Mixer andViP [26,11], utilize the simple fully-connected (FC) layers to
encode spatial information of the input, which is efficient to capture global de-
pendencies [23,7]. However, MLP-like models are only compatible with a fixed
input resolution. When processing larger-resolution inputs, the model size must
be increased correspondingly, leading to an unaffordable increase in computa-
tional memory (O(n2)).

To address this issue, we introduce a novel adaptive fully-connected (AdaFC)
layer. We rethink their conventional design and utilization strategies to overcome
these limitations. The key insight is that FC layer weights can be reused in a
proper way to generate new weights of adaptive shapes for different inputs,
rather than being fixed as in conventional designs. Specifically, the proposed
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AdaFC takes the pre-defined weights as basis and learns to dynamically gen-
erate the weights of new shapes on-the-fly to adapt to the inputs of various
shapes. Therefore, it is easy for AdaFC to process inputs with arbitrary reso-
lutions while saving computational costs. We investigate multiple strategies for
weight generation, including the basis size and selection, and present a simple and
effective method for dynamic weight generation. Based on the proposed AdaFC,
we design a new MLP-based network architecture, named MedMLP. MedMLP
adopts the classic pyramid structure used in CNNs. The proposed AdaFC and
the fully-connected layer are respectively used in each building block for spatial
information encoding and channel information mixing. As shown in Fig. 1(a),
MedMLP offers superior efficiency and accuracy compared to the state-of-the-art
mobile CNNs, ViTs and recent MLP-like models. We conduct extensive experi-
ments to evaluate the proposed MedMLP. Specifically, MedMLP achieves 20.1%
higher accuracy on SINDI dataset than the ResNet-50 model with comparable
model size and computations.

In short, we make the following contributions: We exploit the potential of
MLP-like models to improve efficiency by developing a new family of MLP-like
models, providing superior efficiency and zero-shot robustness. In particular, we
propose a novel adaptive fully-connected layer that solves the fundamental limi-
tation of traditional fully-connected layers in adapting to inputs of different sizes
while maintaining GPU efficiency. Further, we propose a new MLP-like model,
MedMLP, that significantly outperforms the previously widely used CNN-based
MobileNetV2 and all the existing MLP-like models. We are the first to reveal the
usability of MLP-like models under the mobile settings. In addition to compet-
itive efficiency and accuracy, the proposed MedMLP offers stronger robustness
than CNN-based models [20], making it more suitable for mobile applications.

2 Method

In this section, we describe in detail how the proposed adaptive fully-connected
(AdaFC) layer works and show how it can be used to solve the above issue of
the conventional fully-connected layer. Based on AdaFC, we also designed a new
MLP-like model for mobile devices, named MedMLP.

2.1 Preliminary on All-MLP Network

Given an input image I, the MLP-like model (e.g., MLP-mixer [26]) first uni-
formly partitions it into S patches (a.k.a. tokens). Each patch is linearly encoded
into a C-dimensional feature vector and these encoded patches form a feature
matrix X of size C × S. The MLP-like model typically uses two all-MLP com-
ponents, with weights W ∈ RS×N and V ∈ RC′×C , to conduct the spatial token
mixing and feature channel mixing to generate new features X ′:

X ′
S = XW, X ′ = V X ′

S . (1)
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Fig. 2. Building block structure of the proposed MedMLP. Functionally, it consists of
two MLP components, which aim at encoding spatial information and channel infor-
mation, respectively. For spatial token mixing, it applies AdaFC to encode the infor-
mation along the height and width dimension separately. For channel mixing, it adopts
the standard FC layers.
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Fig. 3. Comparison to the standard fully connected layer. Given the weight matrix
with shape M×N , where N and M are the input dimension and the output dimension
respectively. For an input tensor of shape S×C, when we use the fully connected layer
to encode the spatial dimension, S should be identical to N as shown in (a). However,
when the input image resolution changes, i.e., S → S′ and S′ ̸= N as shown in (b),
the fully connected layer fails. Our AdaFC splits the weight matrix into multiple basis
and uses them to generate new weights (deep gray boxes) according to the spatial
dimension of the input to make the new weight matrix adaptive to the input, i.e.,
N = S′ as shown in (c).

The all-MLP component provides global receptive field and less inductive
bias than convolution kernels, which are benefiting the model’s learning capacity.
However, it also brings a severe limitation—the spatial resolution of the input
must be fixed as S. Otherwise, the spatial mixing component has incompatible
size with the input features and cannot be applied as illustrated in Fig. 3. To
conquer this issue, we reconsider the way to conduct matrix multiplication in
the fully-connected layer. Our design principles are based on the following two
aspects: (1) It should be as simple as the standard fully-connected layer and no
extra computation or memory overhead should be added; (2) It should be able
to fit input tensors with arbitrary spatial sizes and the computations should be
proportional to the spatial size of the input tensor. To meet both of the above
principles, we propose our adaptive fully-connected layer in the following section.
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Table 1. Architecture definition of AdaMLP-B0 model. We use ‘h’ to denote the
number of heads and ‘e’ the expansion ratio in channel mixing MLP.

Stage Operator Resolution #Filters #Layers
i Ai Hi × Wi Ci Li

1 PatchEmbed 4x4 224 × 224 32 1
2 AdaFC, e4, h1 56 × 56 42 2
3 AdaFC, e2, h2 28 × 28 56 4
4 AdaFC, e3, h4 14 × 14 96 4
5 AdaFC, e6, h8 14 × 14 112 4
6 AdaFC, e6, h32 7 × 7 224 4
7 Head & LayerNorm 1 × 1 1000 1

2.2 Adaptive Fully-Connected Layers

Let M ×N be the shape of the weight matrix A, where N and M are the input
and output dimensions of the fully connected layer, respectively. Let X be the
input tensor of size C × S, where S is the spatial dimension (i.e., number of
tokens) and C is the channel dimension. When we use the fully connected layer
to encode the spatial dimension, if S is not identical to N , the weight matrix A
does not match the input X and cannot be applied directly. Thus, the weight
matrix A should be adjusted according to the spatial dimension S of the input X
to make N equal S. To this end, we propose to take A as the basis for generating
a new weight matrix A′ via an adaptive weight generation process.

As shown in Fig. 3, we first divide A along the input dimension into G basis,
yielding [A1, · · · , AG]. The input dimension of each base weight thus becomes
N/G. To make the input dimension of A match the input tensor X of spatial
size S, the adaptive weight generation process generates SG/N different weight
matrices A′

i of size M ×N/G from the basis [A1, · · · , AG] as follows:

A′
i = αiAi,:,0: + (1− αi)Ai,:,1:. (2)

Here αi is the combination parameter for the i-th weight basis and is learned
end-to-end. The generated weights W ′

i with i = 1, . . . , SG/N are concatenated
to form a new weight matrix A′ = [A′

1, . . . , A
′
SG/N ] of size M × S, which is thus

compatible with the input of spatial dimension S. The generated new weights
A′, with input dimension S, is applied to the input for spatial encoding. A more
detailed analysis of the exploration of the basis sampling strategy can be found
in the supplementary material.

2.3 The MedMLP Model
The architecture of building blocks of the proposed MedMLP can be found in
Fig. 2. It takes an image of arbitrary size n× n as input and uniformly splits it
into a sequence of image patches (4× 4). All the patches are then mapped into
linear embeddings (or called tokens) using a shared linear layer as [26] followed
by a layer normalization [1]. We next feed all the tokens into a sequence of
Adaptive MedMLP block to encode both spatial and channel information.

The MedMLP Block. In classification, the input image resolution is often
set to 224 × 224. Suppose the patch size is 16 × 16. The number of token, i.e.,
the spatial size, should be 14×14 = 196. Such a large value will result in a large
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Table 2. Zero-shot accuracy with scaling image resolutions. We compare the classifi-
cation accuracy of MedMLP and MobileNetV2 when applying them directly to images
of varying resolutions, without fine-tuning. Benefiting from the AdaFC, our proposed
MedMLP can process images with varying resolutions and achieve higher accuracy
than MobileNetV2 consistently.

Model 224× 224 192× 192 160× 160 128× 128

MobileNetV2 72.0 70.1 66.2 59.4
MedMLP-B0∗ 75.3 (+3.3) 73.5 (+3.4) 69.8 (+3.6) 63.3 (+3.9)

number of weight basis, consuming huge amount of memory. To mitigate this
issue, we adopt a similar strategy to ViP [11] and encode the spatial information
along the height and width dimension separately with the permutation strategy.
Different from ViP, we further decompose the layer into two consecutive layers
with a bottleneck structure. The channel mixing component is a normal MLP
which consists of two fully connected layers with a non-linear activation. For spa-
tial information mixing, we use two branches to encode the information along
the height and width dimension, respectively, each of which has two AdaFCs.
Suppose the input tensor has the shape of C×S′. Without the bottleneck struc-
ture, to guarantee the spatial size of the output is still S′, our basis sampling
strategy should be applied to both the input and output dimensions of the weight
matrix. This means the weight matrix would have a shape of S′ × S′ and the
computation cost will be proportional to C · S′ · S′, which is quadratic in S′.

3 Experiments

3.1 Implementation details

We use Pytorch for all model training. We use AdamW [14] optimizer with ini-
tial learning rate 1e−3 and weight decay of 0.05. We train the model for 300
epochs without cutmix and auto-augmentation, which are adapted by previous
All MLP networks [26,27] reproduced in the timm [28] library. The reported
results of MobileNetV2 are reproduced with the same training settings. When
comparing with other SOTA models, we report the results with advanced train-
ing recipes with CutMix [29] and RandAug [5] added using same settings as
previous methods [11,26,27].

3.2 Model Analysis and Ablation Studies

We first evaluate MedMLP’s performance on natural image datasets since the
pre-training is also an essential step for a good performance on medical datasets.
We evaluate the performance of MedMLP on the ImageNet benchmark [6] and
its variant ImageNet-Real [3], ImageNet-C [10], ImageNet-A and ImaegNet-R
for the model’s generalization performance under zero-shot settings.
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Table 3. Top-1 accuracy comparison of our MedMLP with the recent MLP-like models
on ImageNet [6] and ImageNet Real [3] (‘Real’). All the models are trained without
external data.

Networks Param. FLOPs ImageNet (%) Real (%)

ViP (scaled) [11] 6.7M 1.5B 70.3 78.4
MedMLP-B0 (Ours) 4.9M 0.6B 74.3 81.6

gMLP-tiny16 6.0M 2.7B 76.4 –
MedMLP-B1 (Ours) 8.4M 1.0B 76.2 83.0

Mixer-B/16 [26] 59.0M 11.6B 76.4 82.0
ResMLP-S12 [27] 16.0M 0.8B 76.2 83.5
MedMLP-B2 (Ours) 12.7M 2.1B 78.3 84.8

Scalability. The proposed MedMLP provides a modular architecture design
by taking the AdaFC block as the basic block for spatial information encoding
and the standard FC for channel information encoding. Such design makes it
easier for MedMLP to scale up by removing the constraints of the strict match
between the dimensions of the weights tensor and the feature tensor. To verify the
effectiveness, we present four variants of MedMLP, termed -B0, -B1, -B2 and -B3,
respectively, and evaluate their performance. The models are scaled based on -B0
model. Their performances on ImageNet are summarized in Supplementary B.
By directly scaling up the model from -B0 to -B1, the accuracy of MedMLP can
be improved from 74.3% to 76.2%, yielding a gain of 1.9%. Further scaling up the
model to -B2 and -B3 results in 78.3% and 81.1% top-1 accuracy, respectively.
These experiments indicate that our MedMLP indeed provides a series of MLP-
like models that are not only applicable for mobile settings but also applicable
for other settings with less computation resource constraint.

Zero-shot recognition on dynamic image resolutions. As mentioned above,
it is impossible for existing MLP-like models, that rely on traditional fully-
connected layers, to cope with images of various resolutions. Instead, the pro-
posed MedMLP overcomes this limitation. Table 2 shows the zero-shot accuracy
(without any model architecture change or fine-tuning) of our MedMLP and
MobieNetV2 when classifying images of varying resolutions on ImageNet. As
shown, MedMLP can deal with images of varying resolutions without fine-tuning
the model and consistently perform better than MobileNetV2. The improvement
over MobileNetV2 becomes gradually larger when the resolution goes lower. This
implies the proposed dynamic weight generation approach in AdaFC effectively
extracts distributed features from the inputs and enables the model to adapt
well to scalable inputs.

3.3 Results on Zero-shot Retinal Image Classification

After verifying the performance on natural image datasets, we move to verify
the zero-shot classification capability on medical datasets. We included anterior
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Table 4. Domain generalization capability on medical image dataset

Model Name Model Size FLOPs ImageNet-1k SCES SINDI Pre-trained

ResNet-50 25M 4G 76.1 71.2 55 No
Swin-Tiny 29M 4.5G 81.3 81.5 72.9 Yes

MedMLP-B0 4.9M 0.6G 74.3 65.4 58.5 Yes
MedMLP-B1 8.4M 1.0G 76.2 70.5 63.1 Yes
MedMLP-B2 12.7M 2.1G 78.3 73.1 68.5 Yes
MedMLP-B3 25.7M 4.1G 81.1 83.6 75.1 Yes

segment photographs obtained from Singapore Epidemiology of Eye Diseases
(SEED) Study, which includes the Singapore Chinese Eye Study (SCES) and
Singapore Indian Eye Study (SINDI). We further included two clinical studies,
namely the Iris Surface Features (ISF) and Irido-Choroidal Characteristics (ICC)
study, on primary angle closure disease (PACD).

PACD is a spectrum of disease that is characterized in common by an ob-
struction to aqueous humor outflow. It may culminate in developing a more
visually debilitating form of glaucomatous optic neuropathy. We randomly split
sub-set of data from the Singapore Chinese Eye Study (SCES), the Singapore
Indian Chinese Cohort (ICC), the Iris Surface Features (ISF), in total 4715 eyes
into training, validation, and testing dataset following a ratio of 7:1:2. The other
iris fundus photo dataset used for external validation is sub-set of the Singapore
Indian Eye Study (SINDI) which contains 250 eyes.

Finally, we show that MedMLP achieves the best trade-off between com-
putational cost and the zero-shot cross-domain generalization capability. The
results are shown in Table 4. It is clearly observed that both Swin transformer
and MedMLP achieve significantly better accuracy when tested on the out-of-
distribution dataset SINDI.

The results reveal that the conventional ResNet-50 model achieves compara-
ble accuracy on the SCES dataset with the Swin-Tiny model. However, it per-
forms significantly inferior to Swin-Tiny when evaluated on out-of-distribution
datasets (SINDI). Nevertheless, the performance of the Swin-Large model, which
is scaled up from Swin-Tiny, does not exhibit an adequate level of improvement,
likely because of underfitting, owing to the small amount of data available. To
address this issue, we proceed to utilize the pre-trained Swin-Large model on
the ImageNet-22K dataset. Remarkably, the classification accuracy improves by
13.3% using the same model architecture. Nevertheless, it is crucial to note that
transformer-based models typically necessitate a substantial amount of compu-
tation, resulting in a high runtime latency. As a consequence, deploying such
models to medical diagnosis devices might be not practical.

4 Conclusions

In this paper, we introduced the adaptive fully-connected (AdaFC) layers to
address a fundamental limitation of existing MLP-like models that they cannot
adapt to different input resolutions. Taking AdaFC as the basic building block for
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spatial information encoding, we present the MedMLP model. We surprisingly
find that MedMLP is a strong competitor to CNNs for mobile settings and
performs much better than ViT models via extensive experiments. MedMLP
reveals the great potential of MLP-like models and offers a promising alternative
model for mobile applications. We believe our work inspires future works to
explore the performance potential of MLP models further.
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