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Abstract. Medical image classification is an important task in many
different medical applications. The past years have witnessed the success
of Deep Neural Networks (DNNs) in medical image classification. How-
ever, traditional softmax outputs produced by DNNs fail to estimate
uncertainty in medical image predictions. Contrasting with conventional
uncertainty estimation approaches, conformal prediction (CP) stands out
as a model-agnostic and distribution-free methodology that constructs
statistically rigorous uncertainty sets for model predictions. However,
existing exact full conformal methods involve retraining the underlying
DNN model for each test instance with each possible label, demanding
substantial computational resources. Additionally, existing works fail to
uncover the root causes of medical prediction uncertainty, making it dif-
ficult for doctors to interpret the estimated uncertainties associated with
medical diagnoses. To address these challenges, in this paper, we first pro-
pose an efficient approximate full CP method, which involves tracking
the gradient updates contributed by these samples during training. Sub-
sequently, we design an interpretation method that uses these updates to
identify the top-k most influential training samples that significantly im-
pact models’ uncertainties. Extensive experiments on real-world medical
image datasets are conducted to verify the effectiveness of the proposed
methods.

Keywords: Medical image classification · Deep learning · Uncertainty
estimation · Model explanations.

1 Introduction

Effectively classifying medical images is crucial for aiding clinical care and treat-
ment [29, 21]. For example, analysis X-ray is the best approach for diagnosing
pneumonia [21], responsible for approximately 50,000 deaths annually in the
US. However, classifying pneumonia from chest X-rays needs professional radiol-
ogists, who are often rare and expensive resources in many regions. Traditional
machine learning methods, such as SVMs [17], have been used in medical image
classification for quite a long time. However, their performance is far from the
practical standard, and their development has quite slowed in recent years. Also,
the feature extraction and selection are time-consuming and vary across different
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objects [13]. Recently, deep learning [15, 24] has significantly advanced medical
image classification [28, 5, 14], showing substantial performance gains across dif-
ferent types of medical images, including CT/MRI and ultrasound images.

In medical image classification, accurately estimating prediction uncertainty
is vital for reducing diagnostic errors. While DNNs naturally produce softmax
outputs, they lack a solid theoretical uncertainty guarantee. Along with the sig-
nificance of uncertainty estimation, a paradigm called conformal prediction (CP)
[23, 7, 4, 16] has spawned, which is a simple yet powerful paradigm for creating
statistically rigorous uncertainty sets for pre-trained networks. Critically, the
sets are valid in a distribution-free sense without distribution and model as-
sumptions. Conformal prediction requires a user-specified significance level to
restrict the frequency of errors that the model is allowed to make. For example,
a significance level of 0.1 means that the model makes at most 10% erroneous
predictions. For skin-lesion classification [25, 19], this means that predictions are
not a single label, but instead a set (e.g., {“melanocytic nevus”, “melanoma”}),
which covers the true label with 1 − 10% = 90% probability on average. It
matches the intuition of clinical decision-making by providing a set of possible
labels that rule in or rule out certain diseases similar to a differential diagnosis.

Existing works on CP can be divided into: split CP [20, 11] and full CP
[7, 23]. Compared with split CP, full CP achieves stronger validity guarantees
and typically smaller prediction set sizes by ensuring that conformal sets are
calibrated based on the full data distribution. This is achieved at a significant
computational cost, as full CP requires the model to be retrained for each test
data against every possible label to assess uncertainty accurately. This is im-
practical for DNNs due to resource demands. While [18] introduces the influence
functions-based approximation method, recent literature [2] reveals the limita-
tions and fragility of influence functions in DNNs. The inefficiency challenge is
pronounced in scenarios requiring rapid real-time prediction uncertainties.

Additionally, existing research fails to elucidate the origins of prediction un-
certainties, a gap particularly critical in the medical domain. In healthcare, accu-
rately identifying the causes of prediction uncertainty is beneficial for enhancing
patient outcomes and ensuring diagnostic accuracy. Identifying which training
samples contribute most significantly to the model’s uncertainty can provide
valuable insights into the model’s behavior [22, 30]. This insight is vital for med-
ical practitioners and researchers aiming to refine the model, whether by enrich-
ing the dataset with more diverse medical image samples, fine-tuning the model’s
parameters to better capture the nuances of complex medical conditions, or em-
ploying advanced training strategies to bolster the model’s predictive accuracy
and reliability. Therefore, the ability to explain prediction uncertainties becomes
paramount, especially in medical applications.

To address the aforementioned challenges, in this paper, we first propose
TAFCP, a training Trajectory-based Approximate Full CP method for medical
image classification. Specifically, in our method, we expand the training tra-
jectory of the pre-trained model with a Taylor series, and then formalize the
approximation of the deletion and addition of specific samples from the pre-
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trained model via a single-step, closed-form update. In this way, our method can
effectively alleviate the high computational demands of full CP by eliminating
the need for model retraining. In addition, we also develop a novel Uncertainty
Explanation method (UnEX) to identify the top-k most influential training sam-
ples impacting the model’s uncertainty. This insight enhances understanding of
prediction uncertainty, helping developers create transparent and interpretable
diagnostic uncertainty tools for clinicians. Extensive experiments are conducted
across a variety of medical image classification tasks to demonstrate the effective-
ness and potential of our proposed methods for practical medical applications.

2 Methodology

In this section, we introduce our approximate full CP method in medical image
classification, which efficiently constructs conformal sets without retraining. Fol-
lowing this, we present a novel interpretation method that offers the transparency
necessary for clinicians to understand prediction uncertainties effectively.

Without loss of generality, in this paper, we consider the medical image
classification tasks. Let Y denote the number of classes. We denote the available
training dataset as D = {zi = (xi, yi)}Ni=1, where xi ∈ Rd is d-dimensional, N
denotes the number of training samples and yi ∈ [Y ]. Given D, we can train a
classifier f(·;W ∗) : Rd → RM by solving the following optimization

W ∗ = arg min
W∈W

N∑
i=1

ℓ((xi, yi);W ), (1)

where ℓ is defined based on the cross-entropy loss (the de-facto choice for clas-
sification). Many established optimization schemes are derived from mini-batch
stochastic gradient descent (SGD) [6, 24]. Formally, mini-batch SGD can be de-
scribed as Wt+1 = Wt−η ∂ℓ

∂W |Wt,x̄t
, where weights at step t are obtained using the

weights from step t−1, x̄t is the mini-batch data used at step t, and η is the learn-
ing rate. For the well-trained classifier f(·;W ∗), it outputs class probabilities of
the incoming patient xpat (i.e., f(xpat;W ∗) = [f1(x

pat;W ∗), · · · , fY (xpat;W ∗)]).
The predicted label for xpat is y(xpat;W ∗) = argmaxŷ∈[Y ] fŷ(x

pat;W ∗).
Training trajectory-based approximate full CP method. Note that

when using traditional full CP to construct the conformal prediction set Cε(xpat)
of possible labels for patient xpat, as indicated in Algorithm 1 in Fig. 1a, sta-
tistical test is conducted for each possible label ŷ ∈ [Y ] to decide if it should
be included in Cε(xpat). Importantly, the statistical test requires computing a
non-conformity score αi by retraining the model for each sample in the newly
augmented training set D ∪ {(xpat, ŷ)}. Then, a p-value is computed, and a de-
cision is taken based on the threshold ε. Assuming that the training data D and
xpat are exchangeable [23], the true label y∗(xpat) of patient xpat satisfies

P (y∗(xpat) ∈ Cε(xpat)) ≥ 1− ε. (2)
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Fig. 1. An overview of our approximate full CP and uncertainty explanations.

Notably, the data exchangeability assumption is much weaker than the i.i.d
assumption [23]. However, as illustrated in Fig. 1a, calculating the conformal
set requires retraining the underlying DNN model with the added data and then
executing a leave-one-out retraining procedure. Yet, such retraining for each test
case and label is resource-heavy and impractical for large networks.

The challenge of running traditional full CP is the computation of the non-
conformity scores αi = ℓ(zi, W̃D∪{ẑ}\{zi}). Each score is determined by comput-
ing the loss of the model at sample zi ∈ D∪{ẑ} after adding sample ẑ and remov-
ing sample zi from the model’s training data D. To avoid retraining each time,
we propose to approximate the contribution of adding and removing the samples
to the model, and then evaluate its loss at zi. To understand the impact of a
target sample x∗ ∈ D on the final weights W ∗, we apply Taylor series expansion
to the sequence of SGD (Stochastic Gradient Descent) updates [6, 31, 12]. We be-
gin with the definition of a single SGD learning update: W1 = W0− η ∂ℓ

∂W |W0,x̄0
,

where W0 denotes the weights at step 0 and x0 denotes the data sampled at
step 0. Here, we make no constraints on what W0 is. Then, we can obtain W2

(the weight obtained at step 2) as W2 = W0 − η ∂ℓ
∂W |W0,x̄0

− η ∂ℓ
∂W |W1,x̄1

. Based
on that W1 = W0 − η ∂ℓ

∂W |W0,x̄0
, we can rewrite W2 as

W2 = W0 − η
∂ℓ

∂W
|W0,x̄0 − η

∂ℓ

∂W
|W0−η ∂ℓ

∂W |W0,x̄0
,x̄1

(3)

≈W0 − η(
∂ℓ

∂W
|W0,x̄0

+
∂ℓ

∂W
|W0,x̄1

+
∂2ℓ

∂2W
|W0,x̄1

(−η ∂ℓ

∂W
|W0,x̄0

)). (4)

To scale the above to t sequential updates, note that the hessian terms from ex-
pansion are recursively interdependent. Thus, we have the below approximation

Wt ≈W0 − η

t−1∑
i=1

∂ℓ

∂W
|W0,x̄i +

t−1∑
i=1

g(i), (5)

where g(i) is recursively defined as g(i) = −η ∂2ℓ
∂2W |W0,x̄i

(−η
∑i−1

j=0
∂ℓ
∂W |W0,x̄j

+∑i−1
j=0 g(i)) with g(0) = 0. In Eq. (5), the terms in the first sum are simply

gradients taken with respect to the initial model weights W0, and x̄i follows
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the order we give data to the DNN model. Note that the exact order does not
matter as we simply add them. Therefore, the effect of the target sample x∗ ∈ D
(provided at any step in training) on this first sum is a model gradient computed
with respect to W0 and x∗. Since the second term is a negligible error for practical
applications [12], we can ignore this term. Based on the above, to unlearn sample
x∗ from the pre-trained model W ∗, we perform the below update

W̃ ←W ∗ +
ηE

b
∇ℓ(x∗;W ∗), (6)

where b is the batch size and E is the number of epochs. In the above, we simply
add back these gradients by adding ηE

b
∂ℓ
∂W |W0,x∗ to the final weights to unlearn

data without retraining. In a similar way, to add a new data x∗ /∈ D, we need
to calculate W̃ ←W ∗ − ηE

b ∇ℓ(x∗;W ∗), as shown in line 8 of Algorithm 1.
Based on the above, for patient xpat, we can efficiently obtain its αi (in line

9 of Algorithm 1 in Fig. 1a) without retraining. Notably, our method gives a
substantial speed-up over full CP to construct conformal sets by requiring only
a single update for sample modifications, enhancing scalability for large datasets.

Uncertainty explanations. In medical applications, interpreting uncer-
tainties associated with diagnosis predictions is essential. Our goal here is to
identify the top-k most influential training samples for the generated conformal
sets. For simplicity, we illustrate the main idea of our proposed UnEx via an ex-
ample in Fig. 1b, where we focus on the top-k most influential training samples,
the absence of which would lead to excluding a label ytar ∈ [Y ] (e.g., “melanoma”)
from the original conformal set Cε(xpat) (e.g., {“melanoma”, “basal cell carci-
noma”, “actinic keratosis / Bowen’s disease”}). For each zi = (xi, yi) ∈ D, we
define a discrete indication parameter ξi ∈ {0, 1} to indicate whether zi should
be the top-k most influential (ξi = 1) or not (ξi = 0). The influential dataset
D̃k is denoted as D̃k = D ◦ Φ = {zi|zi ∈ D and ξi = 1}, where Φ = {ξi}Ni=1. To
select the most influential subset D̃k, we formulate the following optimization

max
D̃k=D◦Φ

I[p(xpat, ytar) < ε] +
∑

y∈Cε(xpat)\ytar

I[p(xpat, y) > ε] (7)

s.t. W̃ ←W ∗ +
∑
zi∈D

ξi ·
ηE

b
∇ℓ(zi;W

∗),

where Φ = {ξi ∈ {0, 1}}Ni=1, and p(xpat, y) is defined in line 10 in Fig. 1a. The
removal of the optimized subset D̃k would result in the deletion of ytar from the
original conformal set, i.e., ytar /∈ C̃ε(xpat) and ytar ∈ Cε(xpat), where C̃ε(xpat)
is derived based on D \ D̃k. Thus, the above first loss is designed to enforce
the exclusion of ytar from C̃ε(xpat), while the second one aims to guarantee
the inclusion of the remaining labels. Additionally, for the above constraint, we
adopt our proposed approximate update method in Eq. (6) to provide a closed-
form update for the deletion of the selected training samples. In this way, we
can circumvent the extensive computational and storage requirements associated
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with such bi-level optimization problems [27, 10], which typically necessitate the
full retraining to solve the inner problem before updating the outer one. Notably,
we can easily extend the explanation framework in Eq. (7) to generate different
uncertainty explanations, such as elucidating the exclusion of the true label.

However, directly solving this framework is infeasible due to the discrete
nature of the above indication function-based loss, which involves the combina-
tional search across the training samples to identify the influential subset D̃k

and is computationally infeasible. To address these challenges, we propose an
efficient empirical search method, which begins with an empty set and gradually
adds the most influential sample. The search process continues until adding a
sample causes the targeted label to shift from being inside to outside the gen-
erated conformal set. Note that the optimal value of k varies across different
incoming patients, reflecting the personalized aspect of our method.

3 Experiments

In this section, we perform comprehensive experiments to validate the effective-
ness of our methods. Due to space limitations, more experimental details and
results can be found in the supplementary material.

3.1 Experimental Setup

Datasets. In experiments, we adopt the following real-world medical image
datasets: ISIC 2018 [8], BloodMNIST [1], and OrganCMNIST [3, 26]. ISIC 2018
consists of 10,015 dermoscopic images spanning 7 skin diseases. BloodMNIST
is a dataset of normal peripheral blood, featuring 17,092 images of individual
cells. OrganCMNIST comprises 23,583 2D computed tomography (CT) images
extracted from the central slices of 3D bounding boxes in the coronal view.

Baselines. In experiments, we adopt the exact full CP (ECP) with full
retraining [23, 7] and influence functions-based approximate full CP (ACP) [18]
as the baselines. Specifically, ACP employs influence functions (second-order) to
approximately update the model when constructing the conformal sets.
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Fig. 4. Conformal sets comparison. Bold and underlined phrases mean true labels.

Implementation details. For the adopted datasets, we employ ResNet-18
[9] and a 2-layer convolutional network (CNN). The CNN incorporates convolu-
tional blocks with 16 and 32 features, respectively, and integrates various linear
layers. We train the model for 40 epochs, using the SGD optimizer with a learn-
ing rate of 1e–3 and a batch size of 100. All experiments are conducted across 5
trials, and we report the average results.

3.2 Experimental Results

Validity. In Fig. 2, we investigate the validity of our proposed TAFCP on ISIC
2018, BloodMNIST, and OrganCMNIST datasets. We report the empirical cov-
erage rate (the percentage of true labels that are held in the conformal sets)
at varying significance levels. We observe that the coverage rates achieved by
TAFCP are at least 1 − ε, which consistently satisfies the desired probability
expectations in Eq. (2). For example, TAFCP attains a coverage rate of 0.8 on
the BloodMNIST dataset with a significance level set to 0.2. Therefore, TAFCP
demonstrates a satisfying empirical coverage rate across various datasets, indi-
cating the utility and effectiveness of our proposed approach.
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Efficiency. In Fig. 3, we explore the efficiency of our proposed TAFCP. We
present the average set size at a significance level of 0.1 across different medical
image datasets. As depicted, TAFCP consistently surpasses the ACP baseline,
and is comparable to the exact full CP with retraining. For instance, on the ISIC
2018 dataset, the average set size of TAFCP is approximately 1.69, compared to
about 2.4 for ACP. We also provide examples of the conformal sets in Fig. 4. We
observe that both TAFCP and ACP correctly output true labels, while TAFCP
produces smaller sets than ACP. This indicates that TAFCP outperforms ACP
in efficiently modeling uncertainty within medical image classification tasks.

Running time. In Fig. 5, we illustrate the running time of TAFCP. We com-
pare it with the ACP baseline under various data complexity and model complex-
ity within three medical image classification tasks. It is observed that TAFCP
requires significantly less running time than ACP. For instance, in Fig. 5a, when
testing 40 test samples on the ISIC 2018 dataset, TAFCP completes in about 26
minutes, while influence functions-based ACP requires over 150 minutes, where
there is approximately a fivefold difference. Moreover, Fig. 5b reveals that as
the model complexity increases, the running time of ACP exhibits polynomial
growth, whereas the running time of TAFCP shows linear behavior, significantly
reducing the computation cost. These results show TAFCP’s superior computa-
tional efficiency in addressing the time complexity associated with full CP.

Target image:
(melanoma)

Top-5 most influential images:
(melanoma * 5)

Distance of target & top-5 images:  8.873 Distance of target & melanoma samples: 14.560

Before update After update

Prediction set { melanoma, melanocytic nevus } { melanoma, melanocytic nevus, benign keratosis }

Fig. 6. Visualization results of our proposed UnEX.

Uncertainty explanations. Here, we provide a visualization of the gen-
erated uncertainty explanations on the ISIC 2018 dataset with ResNet-18. In
Fig. 6, we visualize the identified top-5 most influential training samples for the
target image (i.e., “melanoma”) on the left side. Initially, the original prediction
set of this target image is {“melanoma”, “melanocytic nevus”} and these influ-
ential samples are labeled as “melanoma”. After deleting these images from the
training set, the prediction set expands and includes the “benign keratosis” label.
Note that a larger conformal set size indicates greater uncertainty in the model’s
predictions. This increased model uncertainty is due to the close proximity of
these excluded images (labeled as “melanoma”) to the target sample (classified
as “melanoma”) that results in a lack of training in this critical area. This gap
in training amplifies the uncertainty in the model’s predictions. Therefore, the
“benign keratosis” label is included in the conformal set for this target sample.
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4 Conclusion

In this research, we first present a training trajectory-based approximate full
CP method, which can efficiently estimate prediction uncertainties with signifi-
cantly reduced computational complexity through a single-step, closed-form up-
date. Following this, we then develop an uncertainty interpretation method that
uses these closed-form gradient updates to identify the top-k most influential
training samples affecting the model’s uncertainty levels. Identifying these criti-
cal samples allows medical imaging experts to focus on targeted enhancements,
thereby reducing uncertainty. Extensive experiments on real-world medical im-
age datasets demonstrate the practicality and efficiency of our methods.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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