
Revisiting Self-Attention in Medical Transformers
via Dependency Sparsification

Xian Lin1, Zhehao Wang1, Zengqiang Yan1(B), and Li Yu1

School of Electronic Information and Communications, Huazhong University of
Science and Technology

{xianlin, zhehao_wang, z_yan, hustlyu}@hust.edu.cn

Abstract. Vision transformer (ViT), powered by token-to-token self-
attention, has demonstrated superior performance across various vision
tasks. The large and even global receptive field obtained via dense self-
attention, allows it to build stronger representations than CNN. However,
compared to natural images, both the amount and the signal-to-noise ra-
tio of medical images are small, often resulting in poor convergence of
vanilla self-attention and further introducing non-negligible noise from
extensive unrelated tokens. Besides, token-to-token self-attention requires
heavy memory and computation consumption, hindering its deployment
onto various computing platforms. In this paper, we propose a dynamic
self-attention sparsification method for medical transformers by merg-
ing similar feature tokens for dependency distillation under the guid-
ance of feature prototypes. Specifically, we first generate feature pro-
totypes with genetic relationships by simulating the process of cell di-
vision, where the number of prototypes is much smaller than that of
feature tokens. Then, in each self-attention layer, key and value tokens
are grouped based on their distance from feature prototypes. Tokens
in the same group, together with the corresponding feature prototype,
would be merged into a new prototype according to both feature im-
portance and grouping confidence. Finally, query tokens build pair-wise
dependency with such newly-updated prototypes for fewer but global
and more efficient interactions. Extensive experiments on three publicly
available datasets demonstrate the effectiveness of our solution, working
as a plug-and-play module for joint complexity reduction and perfor-
mance improvement of various medical transformers. Code is available
at https://github.com/xianlin7/DMA.

Keywords: Medical transformer · Efficient self-attention · Sparse de-
pendency · Feature prototypes.

1 Introduction

Vision transformer (ViT) has exhibited exceptional performance across various
computer vision tasks and attracted widespread concern in medical image analy-
sis [1]. In contrast to convolution neural networks (CNN) focusing on translation
invariance and locality, ViT adopts a distinctive paradigm by gridding an input
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Fig. 1: Vanilla self-attention matrices trained on BTCV where attention maps
tend to be uniform in deeper layers.

image into a series of tokens and building pair-wise global interactions through
self-attention [2]. Specifically, self-attention updates each token by aggregating
all tokens with dependency weights [3]. In this way, self-attention brings a global
receptive field to ViT, promoting its superior feature representation ability [4].

Every coin has two sides. The calculation of self-attention is quadratic to the
number of tokens, resulting in daunting computational complexity and memory
consumption and in turn hindering the deployment of ViT on clinical equip-
ment [5, 6]. Inspired by attention sparsification in natural scenes [7, 8], sev-
eral backbones designed for medical imaging have adopted similar strategies to
simplify self-attention. As two representative approaches, Swin-Unet [9] adopts
window-based local attention while MISSFormer down-samples the key and value
feature tokens by fusing tokens in the same grid window into a new token [10].
Though such hand-crafted approaches efficiently reduce computational complex-
ity and memory consumption [11], the lack of medical context awareness may
result in the loss of important clinical features during dependency reduction and
thereafter performance degradation.

To analyze the performance of ViT in medical imaging, we trained ViT-based
models on a commonly-used abdominal multi-organ dataset (i.e., BTCV [12])
and visualized the learned attention matrices as presented in Fig. 1. Like typ-
ical medical datasets, the number of slices/images in BTCV is fewer than 5k
and the average foreground proportion across different organs is lower than 6%
(as stated in the supplementary material). In other words, compared to natural
scenes, medical datasets are of small scale and low signal-to-noise ratios. As de-
picted in Fig. 1, when training ViT on such datasets, as the network goes deep,
attention matrices gradually tend to become uniform, losing the ability to recog-
nize important dependencies. On the one hand, larger attention matrices require
more data to build effective dependencies. On the other hand, larger background
proportions bring more interference from irrelevant tokens/regions, resulting in
sub-optimal global dependencies. Therefore, simplifying self-attention calcula-
tion while increasing the signal-to-noise ratio in dependency is crucial for un-
leashing the potential of ViT in medical imaging.

In this paper, we revisit self-attention in ViTs from the perspective of de-
pendency sparsification, aiming at increasing the signal-to-noise ratio of med-
ical imaging for performance improvement while reducing both computational
complexity and memory consumption. Specifically, we propose a plug-and-play
dependency merging attention (DMA) mechanism to conveniently boost vanilla
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Fig. 2: Vanilla self-attention and its sparse variants.

ViT for better attention convergence and lower deployment cost. Based on fea-
ture prototypes, generated by imitating the process of cell division, DMA dy-
namically divides feature tokens into groups centered around different feature
prototypes. By merging tokens within the same group into a new prototype
based on both feature importance and grouping confidence, such newly-formed
prototypes can well replace original feature tokens to provide global information
for queries. As the number of prototypes is much smaller than that of feature
tokens, as depicted in Fig. 2 (h), a long series of feature tokens are adaptively
merged into several regions in DMA. In this way, dependency is more sparse and
the foreground proportion is further increased, providing stronger keys and val-
ues for attention calculation. Comprehensive experiments on various tasks and
backbones demonstrate the effectiveness of DMA as a plug-and-play module for
joint complexity reduction and performance improvement.

2 Related Works

Attention Sparsification in ViTs. As illustrated in Fig. 2, existing research on
attention sparsification can be categorized into token-to-window, intra-&-inter-
window, axial-strip, shifted-window, dynamic-k-token, static-super-token, and
dynamic-super-token. Token-to-window methods down-sample keys and values
via a similar operation with uniform tokenization [13, 14]. Intra-&-inter-window
methods build dependency within and across windows sequentially [15]. Axial-
strip methods achieve information transmission by alternately establishing de-
pendencies on different strips [16]. Shifted-window methods build interactions
within a local window [17]. Dynamic-k-token approaches only focus on k impor-
tant regions by predicting the biases or importance scores [8, 7, 18]. By learning
a transformation matrix, methods based on static super tokens fuse all feature
tokens with varying weight assignments into different super tokens [19, 20]. The
proposed DMA can be viewed as a dynamic-super-token approach, which fuses
different regions into different super tokens based on their semantic similarity.
Compared to existing mechanisms, DMA focuses on adaptively merging redun-
dant dependencies and increasing the proportion of interested regions.
ViTs in Medical Imaging. Encouraged by the great success of ViT in com-
puter vision [1], transformer-based models have sparked a research boom in med-
ical image analysis [5]. TransUNet is the first transformer-based model proposed
for medical image segmentation [31]. Inspired by this, a series of frameworks
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have been proposed to combine ViT with CNN for stronger feature representa-
tion learning [21, 22]. However, the heavy computational complexity and memory
consumption limit the application of ViT in medical scenarios. Window-based
and axial-based transformers (as shown in Fig. 2 (e) and (d)) are applied to
balance deployment costs and receptive fields [9, 23]. To pursue device-friendly
global receptive fields, MISSFormer conducts dependency reduction by fusing
the keys and values located in the same grid [10]. Such sparsification methods
are either hand-crafted or locality-based, instead of content-aware global spar-
sification. Comparatively, the proposed DMA can realize global perception by
dynamically merging similar tokens for fewer dependencies and a higher signal-
to-noise ratio.

3 Method

The Overall Architecture. DMA is illustrated in Fig. 3, which adaptively
merges dependency carrying similar information under the assistance of feature
prototypes to realize sparse attention. Specifically, we first condense the stable
structure, texture, and distribution of objects into initial feature prototypes. In
each self-attention layer, taking each prototype as a cluster center, feature to-
kens (i.e., vanilla tokens in ViT) are divided into different groups according to
their feature similarity with each feature prototype. Then, tokens from the same
group are fused into a new prototype weighted by both grouping confidence and
feature importance. By regarding the newly-fused prototypes as key-value pairs,
each query can build global dependency with fewer costs and less noise inter-
ference. The above process contains three key steps, including feature prototype
generation, token grouping, and intra-group merging, each of which is described
in detail in the following. The deployment of DMA in ViTs is illustrated in the
supplementary material.
Feature prototype generation. Feature prototypes are generated from k
initial meta prototypes P0 ∈ Rk×d (i.e., the 0-th level) by imitating the pro-
cess of cell division as depicted in right of Fig. 3. Meta prototypes are input-
independent feature embeddings, which are learned from all training data and
represent the stable and common characteristics of organs/lesions. Each meta
prototype P i

0 ∈ R1×d, i ∈ k would generate two new prototypes P 2i
1 and P 2i+1

1
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in division, formulated by

[P 2i
1 , P 2i+1

1 ] = P i
0E

i
1, (1)

where Ei
1 ∈ Rd×2d is the projection matrix for the i-th prototype in the first

division and P 2i
1 ∈ R1×d and P 2i+1

1 ∈ R1×d are the newly-generated prototypes.
After repeating the above generation process for four times, a series of feature
prototypes P4 ∈ RM×d are generated, where M = 16k. To adapt such com-
mon/shared features (i.e., feature prototypes) to each input image, we introduce
prototype-to-image attention every two divisions, formulated as

Al = σ(LN(Pl)Wq(LN(F )Wk)
T /
√
d), (2)

Fa = (AlLN(F )Wv)Wl + Pl, (3)

P ′
l = MLP(LN(Fa)) + Fa, (4)

where F ∈ RN×d, P ′
l (l = 2, 4), and σ represent feature tokens, the updated

prototypes, and Softmax, Wq,Wk,Wv, and Wl are projection matrices, and LN
is Layer Normalization. Finally, the initial feature prototypes are generated as
P = P ′

4. By generating feature prototypes through cell division, both shallow
feature similarity and deep semantic heterogeneity of objects are well preserved.
Token grouping. Given feature prototypes P ∈ RM×d, tokens in F ∈ RN×d

are grouped by calculating their Euclidean distances with P . Specifically, for
better computation efficiency, feature prototypes P and tokens F are concate-
nated as F = [P, F ] ∈ R(M+N)×d and the distance between the i-th row/element
F(i) ∈ R1×d and the j-th feature prototype P (j) ∈ R1×d is defined as D(i, j) =
||F(i)− P (j))||2/

√
d, where D ∈ R(M+N)×M reflects the feature similarity be-

tween each row/element in F and feature prototypes. Taking the index I ∈
R(M+N) (i.e., I(i) ∈ [1,M ]) of the smallest value in each row of D as its group-
ing category, elements with similar features are grouped. As the closest prototype
of each prototype is itself (i.e., D(i, i) = 0, i ∈ [1,M ]), each prototype is assigned
to its original group and regarded as the cluster/group center. In this way, each
group would have at least one element.
Intra-group merging. After token grouping, for any prototype P (j), elements
from the same group, i.e., F(ϕ(I, j)) ∈ RG×d where ϕ(I, j) represents the in-
dexes of I with the value of j and G is the number of elements in the j-th
group, are merged to update P (j) through a weighted combination based both
grouping confidence Cj ∈ R1×G and feature importance Sj ∈ R1×G. Cj re-
flects the degree of certainty during grouping, i.e., the higher the grouping con-
fidence of an element when its distance to the j-th group is much smaller than
those to other groups, calculated by Cj = C(ϕ(I, j), j)/

∑M
m=1 C(ϕ(I, j),m),

where C(i, j) = e−D(i,j)/
∑M

m=1 e
−D(i,m). By emphasizing more on those ele-

ments with higher grouping confidence, updated prototypes would be biased
towards the most representative features. Sj reflects the importance of a fea-
ture embedding, which is calculated by Sj = S(ϕ(I, j))/

∑
S(ϕ(I, j)), where

S = 1/(1 + e−FWs) with projection Ws ∈ Rd×1. By up-weighting the elements
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with higher importance, crucial information would be enhanced. Finally, P (j) is
updated by P (j)←

∑
(CjF(ϕ(I, j)) + SjF(ϕ(I, j)))/2.

Prototype Loss. To obtain high-quality prototypes, we further divide proto-
types into negative P− = {P (j)|j < M

2 } and positive P+ = {P (j)|j ≥ M
2 },

with P+ representing the common features of target objects or key anatomical
structures and P− representing the common features of background or objects
similar to the background. On the one hand, the feature distance between P+

and P− is expected to be larger than any distance between prototypes within
P+ or P−, making foreground and background features more distinguishable. On
the other hand, the feature distance within P+ or P− is expected to be small
to ensure the accuracy of token merging but should not be too small to ensure
prototype diversity. Therefore, we construct a prototype loss Lp defined as

Lp+
= ∥P̄+ − P̄∥2 −Max(Avg(∥P+ − P̄+∥2), β), (5)

Lp− = ∥P̄− − P̄∥2 −Max(Avg(∥P− − P̄−∥2), β), (6)

Lp = Max(α− 0.5Lp+ − 0.5Lp− , 0), (7)

where β and α are trade-off hyper-parameters. P̄ , P̄+, and P̄− are the average of
P , P+, and P−, respectively. The smaller the β, the higher the similarity within
P+ and P−. The larger the α, the farther the distance between P+ and P−.
Complexity Analysis of DMA. The computation of DMA consists of depen-
dency merging Ω(DM) and sparse self-attention Ω(SSA):

Ω(DM) = (3M + 4d)N + dM2 + 3dM, (8)

Ω(SSA) = (2M + 2d)chN + 2chdM. (9)

As M ≪ N , the complexity of DMA is O(N), which is smaller than that of
vanilla self-attention (i.e., O(N2)). The computation of prototype generation is:

Ω(PG) = (
5

2
M + 6d)hdN +

5

4
hd2M + 10d2M. (10)

As all DMA layers share the same prototype generation in a backbone, the
computation in prototype generation can be ignored compared to self-attention.
Finally, the complexity of self-attention can be reduced from Ω(N2) to Ω(N).

4 Experiments

Datasets. Three publicly available datasets are selected for evaluation. (1)
BTCV1. An abdominal CT dataset consists of 30 scans with 13 annotated or-
gans [12]. (2) INSTANCE2. A dataset contains 100 publicly available brain CT
scans with pixel-wise annotations of intracranial hemorrhage [25]. (3) ACDC3.
1 https://www.synapse.org/#!Synapse:syn3193805/wiki/217789/
2 https://instance.grand-challenge.org/
3 https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Table 1: Quantitative results (i.e., Dice (%)) by replacing self-attention in Tran-
sUNet with different efficient-attention methods on BTCV. AG denotes the com-
bination of right adrenal gland (LAG) and left adrenal gland (RAG).
Method Spl Rkid Lkid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg

TransUNet [31] 91.35 83.67 86.83 58.89 69.49 95.99 75.29 90.34 83.86 68.55 68.67 57.91 76.06
+ DA [8] 90.28 84.07 87.43 58.27 69.42 95.65 76.20 90.34 83.85 69.67 68.46 61.69 76.69
+ Axial [16] 91.34 85.23 89.74 59.79 70.61 95.95 77.57 89.91 83.93 69.18 69.57 58.69 76.94
+ SRA [13] 87.93 84.61 89.99 56.80 71.81 95.86 75.48 90.10 83.25 69.82 70.11 62.31 76.95
+ kNN [7] 89.68 85.94 89.34 60.74 71.25 95.96 78.76 90.44 83.32 67.41 67.16 60.83 77.05
+ SSSA [15] 90.73 85.29 87.56 62.16 68.85 95.67 78.58 90.59 84.69 67.96 68.32 61.71 77.21
+ Swin [17] 91.27 85.10 90.05 56.36 68.89 95.91 79.94 89.71 84.25 69.32 70.21 61.26 77.19
+ PaCa [20] 90.58 84.74 89.94 62.00 71.79 95.78 77.49 89.69 83.43 69.71 67.73 60.25 77.18
+ SSA [14] 90.79 84.11 89.51 58.16 70.73 95.77 77.91 90.72 83.24 70.10 70.56 62.77 77.47
+ STA [19] 91.35 85.43 89.46 55.60 71.04 95.93 78.89 90.08 83.54 71.42 71.13 61.12 77.39
+ BRA [18] 91.76 85.57 87.99 60.62 71.16 95.94 80.17 90.97 84.66 68.09 71.07 59.63 77.48
+ DMA 92.23 86.62 89.00 63.10 72.30 96.03 81.68 91.08 85.12 71.60 71.28 61.31 78.67

An automated cardiac diagnosis dataset consists of 100 scans [24]. Following
the setting in [31, 26], the partitioning ratios of 18/12 and 70/10/20 are utilized
to split BTCV and ACDC. INSTANCE is randomly divided into the training,
validation, and testing sets according to a ratio of 7:1:2.

Implementation Details. The models were implemented in PyTorch 1.8.0.
under the same settings, i.e., an Adam optimizer with an initial learning rate of
0.0001 and a batch size of 8 for 400 rounds.

Comparison with Efficient-Attention Methods. Totally 10 state-of-the-art
(SOTA) efficient-attention methods are used to replace vanilla self-attention in
TransUNet [31] for comparison as summarized in Table 1. In general, reduc-
ing dependency redundancy is beneficial for performance improvement. Among
comparison methods, BRA achieves the best performance with an average in-
crease of 1.42% in Dice, while Swin and SSA outperform all other methods in the
segmentation of Lkid and AG, respectively. Comparatively, the proposed DMA
achieves the best segmentation performance on 10 out of 13 organs, leading to
the best overall segmentation performance and outperforming BRA and baseline
with an average increase of 1.19% and 2.61% respectively in Dice.

Comparison with Segmentation Methods. We insert DMA into five ViT-
based methods and conduct quantitative comparisons with 13 SOTA segmenta-
tion methods across three datasets. As stated in Table 2, both 2D (i.e., SETR,
TransFuse, TransUNet, and FAT-Net) and 3D (i.e., TransBTS) backbones with
vanilla transformer layers benefit from DMA for performance improvement. Fur-
thermore, the performance of TransBTS+DMA and FAT-Net+DMA surpasses
all comparison methods on BTCV&INSTANCE and ACDC, respectively.
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Fig. 4: Comparison results between SETR [4] and SETR+DMA.

Table 2: Quantitative results (i.e., Dice
(%)) of various methods equipped with
DMA against SOTA methods.

Method BTCV ACDC INSTANCE

U-Net [27] 79.78 89.41 73.26
CA-Net [28] 77.80 91.95 73.74
AA-Unet [29] 78.70 91.46 73.21

MISSFormer [10] 75.12 91.19 72.62
H2Former [32] 77.57 92.40 73.72

SETR [4] 64.09 87.14 67.96
SETR+DMA 67.62 88.58 69.57
TransFuse [21] 60.28 89.10 64.42

TransFuse+DMA 61.43 90.39 67.89
TransUNet [31] 76.06 90.80 68.20

TransUNet+DMA 78.66 92.01 70.25
FAT-Net [22] 78.35 91.46 72.20

FAT-Net+DMA 80.44 92.67 73.39

nnU-Net [30] 83.36 91.61 71.12
nnFormer [26] 81.15 92.06 71.47
MedNeXt [33] 82.11 89.00 70.67
TransBTS [34] 82.42 90.59 74.06

TransBTS+DMA 84.12 91.23 77.11

Table 3: Ablation study on the number
of prototypes M and the down-sampling
frequency f on TransUNet evaluated on
BTCV.

M f Dice HD IoU SE GFLOPs Param.

32 6 77.57 20.00 66.63 78.56 29.89 112.07
64 6 78.67 19.25 67.93 79.67 30.50 112.07
128 6 77.65 19.29 66.78 78.32 31.72 112.07
64 3 77.92 19.47 66.98 77.37 30.24 112.07
64 4 78.22 19.81 67.41 78.32 30.35 112.07
64 12 77.37 19.21 66.6 76.63 30.73 112.07

Table 4: Component-wise ablation study
of prototype generation. P-t-I is short
for prototype-to-image attention.

division P-t-I Lp Dice HD IoU SE

◦ ◦ ◦ 76.87 20.35 65.94 78.03
• ◦ ◦ 77.58 19.67 66.51 78.30
• • ◦ 77.92 18.99 67.14 77.68
• • • 78.67 19.25 67.93 79.67

Ablation Study. Comparison results under various settings of M and f are
summarized in Table 3. Given a smaller M , more similar tokens would be merged,
resulting in lower computational complexity but possible information loss, espe-
cially for small-size objects. Comparatively, given a larger M , some prototypes
may be redundant and work as a global messenger, bringing negative effects from
irrelevant tokens. f is the down-sampling frequency of prototypes (described in
supplementary materials). Merging adjacent prototypes (i.e., down-sampling) is
to enrich the semantic features of prototypes and lower the computational com-
plexity. But it may also be harmful for small-size objects as discussed above.
Therefore, the selection of M and f is task-specific. Component-wise ablation
studies in Table 4 validate the designs of prototype generation.

Visualization. Qualitative comparison before and after introducing DMA to
SETR [4] on BTCV is illustrated in Fig. 4. Through DMA, similar tokens are
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merged to reduce redundant dependency, thereby leading to lower GPU memory
and computational costs and smaller but richer attention matrices.

5 Conclusion

We revisit self-attention in medical transformers and propose dependency merg-
ing attention (DMA) for joint complexity reduction and performance improve-
ment. In DMA, similar feature tokens are adaptively merged under the guidance
of feature prototypes, which greatly reduces token redundancy from either back-
ground or repetitive foreground regions. Experiments across various backbones
on three datasets validate the effectiveness of DMA as a plug-and-play module.
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