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Abstract. Medical image segmentation is a critical task in computer-
assisted diagnosis and disease monitoring, where labeling complex and
ambiguous targets poses a significant challenge. Recently, the alpha matte
has been investigated as a soft mask in medical scenes, using continuous
values to quantify and distinguish uncertain lesions with high diagnos-
tic values. In this work, we propose a multi-scale regions-aware implicit
function network for the medical matting problem. Firstly, we design
a regions-aware implicit neural function to interpolate over larger and
more flexible regions, preserving important input details. Further, the
method employs multi-scale feature fusion to efficiently and precisely
aggregate features from different levels. Experimental results on public
medical matting datasets demonstrate the effectiveness of our proposed
approach, and we release the codes and models in GitHub.
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1 Introduction

Medical image segmentation, essential for diagnosis and monitoring [7] [10] [26],
faces challenges with ambiguous targets and consensus among clinicians using
binary masks. The alpha matte, using continuous values for soft masking, offers
a solution for quantifying and distinguishing uncertain lesions effectively.

Matting assumes the image I is a mixture of foreground F and background
B, with the alpha matte α representing the mixing coefficients. This is expressed
as I = αF +(1−α)B, where α ranges from 0 to 1. In medical matting [25] [24],
the diseased lesion is the foreground F , and the normal tissue is the background
B. As shown in Fig. 1 (a), it’s more difficult for multiple clinicians to reach a
consensus annotation using binary masks. The alpha matte in Fig. 1 (b) could
pay attention to the uncertainties related to the characteristics of lesions and has
better representation capability than simple binary masks. Recent methods have
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Fig. 1. Illustrations of motivations. (a) ‘Hard’ binary masks meet challenges with am-
biguous targets and consensus among clinicians; (b) ‘Soft’ alpha matte uses continuous
values for quantifying and distinguishing uncertain lesions; (c) Local ensemble implicit
function decodes feature maps within a fixed region with limited ability to interpolate
over larger regions; (d) The region-aware implicit function interpolates over larger and
more flexible regions, preserving important details.

leveraged image matting to refine mask boundaries for improved segmentation
performance [27] [7] or to construct trimaps as an aid for more precise manipu-
lation of uncertain regions [10] [28] [15] as well as focus on medical matting [25]
[24] in the views of uncertainty. They usually apply U-Net [22] as the backbone
and ignore feature collaboration at different scales. However, the commonly used
bilinear up-sampling and convolutions on feature maps of different scales might
blur the precise information learned in these feature maps.

To efficiently and precisely aggregate features from different levels, we in-
troduce an implicit neural function to define continuous feature maps and align
multi-scale features. The implicit neural representations are recently designed
and use multi-layer perceptron (MLP) to map coordinates to signals, including
representing objects and scenes in 3D reconstruction [13], image super-resolution
[6], decoding RGB values in image super-resolution [6] or feature alignment [12].
Local implicit image function [12] decodes from original feature maps within a
fixed near region (e.g., 2 × 2) around the query coordinate, as shown in Fig. 1
(c). These methods might have limited ability to interpolate over larger regions.

To address this limitation, we propose a new region-aware implicit function
to interpolate over larger and more flexible regions. It could be learned to pre-
serve important details in the inputs, as depicted in Fig. 1 (d). The features can
be viewed as latent codes distributed in spatial dimensions and each latent code
will represent a field of information. The information from the fixed local near
regions, e.g. 2 × 2 in local implicit image function, might be limited, especially
for the boundary regions. In particular, the region-aware implicit function first
learns from the features to determine the dynamic regions and might find similar
information from far away. Inspired by the deform convolution, we employ its
PyTorch implementation to realize the region-aware learning process. Moreover,
we employ multi-scale feature fusion to enhance the quality of predictions by
utilizing different levels of features. The Deformable convolution expands the
network’s receptive field, but coarser scale latent codes (as in IFA and IOS-
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Net) have limitations in capturing fine-grained details, especially in small or
arbitrary regions. Region-Aware mechanism addresses this by introducing offset
mechanisms on feature maps at each scale, enhancing the capture of detailed
information across scales and preserving tiny and intricate features that might
otherwise be lost. Besides, there exist the following clinical values of new mod-
ules: 1) Detailed information from ambiguous and small regions enhances the
accuracy of identifying and characterizing lesions, improving the overall diag-
nostic process. 2) Clear delineation of ambiguous and small regions reduces the
risk of misdiagnosis, ensuring that both benign and malignant areas are correctly
identified and treated appropriately.

The main contributions of this paper can be summarized as follows: Clinically,
our method enhances the accuracy of lesion segmentation by preserving intri-
cate details in ambiguous areas, which is crucial for precise diagnosis and treat-
ment planning. Additionally, the multi-scale feature fusion mechanism ensures
that even tiny and arbitrary regions are accurately captured, preserving critical
details that might be overlooked by traditional methods. Technically, we intro-
duce a region-aware implicit neural representation that interpolates over larger
and more flexible regions, preserving important details missed by conventional
locality-based approaches. Our multi-scale feature fusion mechanism integrates
features across different scales, enhancing prediction quality and ensuring de-
tailed information capture. The experiments have shown the effectiveness of the
proposed method on three public medical matting datasets. The codes and mod-
els are released on https://github.com/xuyanyu-shh/MedicalMattingMLP.

2 Method

2.1 Overview

The network directly takes the medical images as inputs to simulate the alpha
matte predictions, without trimap as inputs like most existing matting work [1]
[17], considering the practice and difficulty of obtaining trimaps in medical diag-
nosis scenes. Similar to [24], the network employs a Probabilistic UNet to output
the uncertainty maps as trimaps, generated from multiple binary segmentation
maps. The binary masks predicted by the Probabilistic UNet can be regarded
as the simulation of clinicians’ labeling. Then we feed the uncertainty maps as
the trimaps to the Matting UNet to predict alpha matte.

Probabilistic UNet. Following the medical matting work [24], we also have
a Probabilistic UNet [8] to generate uncertainty maps as auxiliary information.
It produces a bunch of binary masks and uses the intermediate score maps
to build an uncertainty map. To note that, the uncertainty map indicates the
challenging areas in continuous values, which could be regarded as trimap, in
a similar even same role in the matting problem. In particular, the uncertainty
map Umap is defined as the entropy Umap(xi) = −

∑C
c=1 p̄

c(xi) log p̄
c(xi), where

C is the number of classes, and p̄c(xi) is the probability of the pixel xi in class
c of the average score map of the Prob. UNet predictions. Suppose we generate
N score maps p̂c1, p̂

c
2, p̂

c
3, ..., p̂

c
N per image class, then p̄c(xi) =

1
N

∑N
n=1 p̂

c
n(xi).
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Fig. 2. Overview of the proposed method. The Probabilistic UNet outputs the uncer-
tainty maps as trimaps and Matting UNet receives it to predict alpha matte.

Matting UNet. We employ a U-Net [22] as a backbone to generate the
final alpha matte prediction, as shown in Fig. 2. The output block consists of
two convolution layers at the end of the pipeline. It takes the concatenation of
input image and latent features from the Prob. UNet as inputs. Furthermore,
the uncertainty map is also applied to the last two propagation units, which
provide constraint information [4] [24].

2.2 Region-aware Implicit Function

We propose a new region-aware implicit neural function by interpolating over
larger and more flexible regions to preserve important details in the inputs.
Further, to efficiently and precisely aggregate features from different levels, we
involve a multi-scale feature fusion to align multi-scale features.

Vanilla and Local Ensemble Implicit Functions. An implicit feature
function is utilized to obtain a continuous feature map from a discrete feature
map, which can be decoded at any coordinate. The decoding function fθ, typi-
cally an MLP, is defined over the discrete feature map, where feature vectors are
considered as latent codes distributed evenly in the 2D space and assigned with
2D coordinates. The feature value at the coordinate (uq, vq) in the feature map
M is M(uq, vq) = fθ(z

∗, uq−u∗, vq−v∗), where z∗ is the interpolated latent code
from (u∗

q , v
∗
q ) location and (u∗

q , v
∗
q ) is nearest one to (uq, vq). The local ensemble

implicit feature function [6] directly decodes from the original feature maps in a
fixed region, such as 2× 2, around the query coordinate:

M(uq, vq) =
∑

i∈{00,01,10,11}

fθ(z
∗
i , uq − u∗

i , vq − v∗i ), (1)
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where z∗i (i ∈ {00, 01, 10, 11}) are the nearest latent code in top-left, top-right,
bottom-left, bottom-right sub-spaces.

Region-aware Implicit Function. We introduce a novel region-aware im-
plicit function for larger and more flexible regions, as shown in Fig. 2. The
proposed region-aware implicit function also decodes from the original feature
maps in a 2 × 2 = 4 feature code around the query coordinate, while the fea-
ture codes might be near around the query coordinate and far away from it. In
particular, the feature value at xq in the feature map M is defined as

M(uq, vq) =
4∑
i

fθ(z
∗
i , uq − u∗

i , vq − v∗i ), (u
∗
i ∈ [0, HW ], v∗i ∈ [0,WM ]), (2)

where HW and WM are the width and height of the feature map M . fθ is a two-
layer MLP. To learn flexible regions, we employ an offset convolution layer to
learn the offset, taking the feature value at xq in the continuous feature map M as
input. Then, the decoding function fθ decodes directly from the original feature
maps from the learned positions. The decoding function fθ is jointly learned with
the whole matting U-Net, enabling the learned features to precisely represent
continuous fields of information.

Both the vanilla implicit function and local ensemble implicit function use
distance measurement to decode the nearest one or the top four original fea-
tures around the query. Unlike them, our region-aware implicit function pays
more attention to the feature itself and decodes the similar or related original
features around the query. The regions determined by the learned offsets have
similar patterns, as shown in the Region-aware Implicit Function Visualization
of learned offset in the Experiment Section.

Multi-scale Feature Fusion. To take advantage of different levels of fea-
tures, we employ a multi-scale feature fusion to further improve the quality of the
predictions. Taking aligning the feature maps {F}3i=1 as an example, we extend
the region-aware implicit function to fuse multi-scale features. The resolutions
of feature maps F1, F2, F3 are H ×W , H/2×W/2 and H/4×W/4, respectively.
It defines a continuous feature map M1,2,3 over multi-level discrete feature maps
in different resolutions. Specifically, we define the the value of M1,2,3 as

M1,2,3(uq, vq) = [F 1;M2,3(uq, vq)],M
2,3(uq, vq) = [F 2;M3(uq, vq)], (3)

where [; ] is the concatenation operation and M3(uq, vq) is obtained from equa-
tion (2). Intuitively, each latent code still represents a field of feature that can
be decoded by relative coordinate, and fθ can decode the field for each level
and model the interaction across different levels at the same time. We use the
augmented and aligned feature map M1,2,3(uq, vq) to predict the alpha matte.

2.3 Implementation of Region-aware Implicit Function

The proposed region-aware implicit function needs to operate on features lo-
cated in arbitrary places, rather than a regular rectangular region. To reduce
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Fig. 3. Implementation of Region-aware Implicit Function. To learn flexible regions,
an offset convolution layer (gdeform) is used to learn the offset, taking the feature value
at xq in the continuous feature map M as input.

the additional operation cost on decoding features at arbitrary places, we use
the deformable convolution layer deform_conv2d on the PyTorch platform to
efficiently implement the region-aware implicit function. As the output size of
the deformable convolution is the same as the input, we repeat running it
and stack the outputs to arbitrary resolution, as shown in Fig. 3. The final
continuous feature map M in equation (2) is then defined as follows: M =
fstack(

∑
fθ(gdeform(x, xδ), xδ)), where xδ is the learned offsets from the offset

convolution layer gδ. fstack is the stack operation.

2.4 Loss Functions

The total loss comprises the binary mask prediction loss Lseg and alpha matte
prediction loss Lmat. For the binary mask prediction, we use a combination of
cross-entropy loss Lce and Kullback-Leibler loss Lkl. The former aims to match
the predicted mask and the pseudo ground truth mask, while the latter is used
to minimize the divergence between the prior distribution P and the posterior
distribution Q [16]. For the alpha matte prediction, we use the absolute differ-
ence Lmae and the gradient difference between the predicted alpha matte and
the ground truth alpha matte Lgrad. Furthermore, we use an uncertainty map
to generate a mask, which is applied to concentrate the gradient loss in the
uncertain regions. To further improve performance, we adopt the uncertainty
weighting strategy [14], as proposed in [24].

3 Experiment

3.1 Experimental Setting

We implemented our proposed model using the PyTorch framework [20]. The
Adam optimizer is adopted with a base learning rate of 5×10−5. All experiments
are trained 100 epochs with a batch size of 4. We employed a cosine annealing
schedule [3] [18] after a 1-epoch long steady increasing warm-up from 0 to base
learning rate. To augment the data, we applied several techniques during the data
pre-processing stage, including flipping, rotation, and elastic transformation [23].
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Datasets LIDC-IDRI ISIC Brain-growth

Model SAD MSE Grad SAD MSE Grad SAD MSE Grad
Bayesian 0.0778 0.0819 0.1535 7.7535 0.1624 9.2632 0.8435 0.1662 1.5921
Closed-Form 0.3040 0.4736 0.7584 21.7274 0.9062 2.7009 1.5419 0.4410 2.6960
KNN 0.0737 0.0451 0.1381 7.6282 0.1861 4.1263 0.6534 0.1073 1.1548
Information-Flow 0.0663 0.0351 0.1001 5.3062 0.1061 2.8643 0.6819 0.1056 1.5007
Learning Based 0.0554 0.0286 0.0826 8.4567 0.2113 4.8210 0.6061 0.0898 1.0559
FBA 0.0598 0.0395 0.1143 8.8235 0.2590 4.9446 0.7711 0.1390 1.2350
MatteFormer 0.0831 0.0224 0.1972 7.6443 0.2429 6.9984 1.0651 0.2443 1.9827
Medical matting 0.0396 0.0214 0.0587 1.1889 0.0178 0.2551 0.4150 0.0467 0.6015
Ours 0.0398 0.0188 0.0540 0.3611 0.0184 0.0887 0.4032 0.0405 0.5411

Table 1. Qualitative comparison of our proposed model and other state-of-the-art
methods on three datasets using three evaluation metrics. (Best, Second )

Fig. 4. Visual comparison of alpha matte generated by different methods.

Datasets. We use 3 public medical matting datasets: a subset of LIDC-IDRI
[2], Brain-growth of QUBIQ [9], and a part of ISIC 2018 dataset [9]. To reduce
the interference caused by random errors, we follow the settings in [24] to use part
of two datasets for a fair comparison and perform a four-fold cross-validation.

Metrics. We use three commonly used evaluation metrics [21]: absolute dif-
ferences (SAD), mean squared error (MSE), and gradient (Grad.).

3.2 Performance Comparison

We perform a comprehensive evaluation of our proposed model on the three med-
ical matting datasets, employing three commonly used evaluation metrics. To
benchmark the performance of our method, we compare it against several state-
of-the-art matting methods, including a Bayesian-based method (Bayesian [8]),
four Laplacian-based methods (ClosedForm [17], KNN [5], Information-Flow [1],
Learning Based [29]), a deep learning-based method (FBA [11]), MatteFormer
[19] and a medical matting method with uncertainty [25].
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Upsampling Scales Kernel size SAD MSE Grad

Bilinear 3 - 0.0401 0.0194 0.0550
Region-aware 3 2x2 0.0398 0.0188 0.0540

Region-aware 1 2x2 0.0397 0.0198 0.0559
Region-aware 2 2x2 0.0396 0.0194 0.0550
Region-aware 3 2x2 0.0398 0.0188 0.0540

Region-aware 3 1x1 0.0406 0.0198 0.0554
Region-aware 3 2x2 0.0398 0.0188 0.0540
Region-aware 3 3x3 0.0401 0.0196 0.0551

Table 2. The Left: The ablation studies on the LIDC-IDRI dataset. The Middle:
The visualization of learned offsets in red points. The Right: More qualitative analysis.

Qualitative Comparison Table 1 shows the qualitative comparison of the
results. We can see that our model outperforms other methods in terms of MSE
and Grad metrics and achieves comparable performance in terms of SAD metric
on the LIDC-IDRI dataset. On the ISIC dataset, ours performs much better than
others in terms of SAD and Grad metrics, and achieves comparable performance
in terms of MSE metric. Our model achieves better performance on the Brain-
growth datasets. It indicates our method better expresses the edge of the fuzzy
transition zone and subtle structural features in the matting results.

Quantitative Comparison We also show some example predictions in Fig.
4. The differences between the foreground and background of medical images are
sometimes less prominent than that in natural scenes, and even sometimes the
foreground area is hard to give a precise range, and the non-foreground com-
ponent in the foreground leads to the failure of the trimap mechanism. The IF,
LB, FBA methods tend to produce over-segmented or binary mask-like results,
missing finer details. Both MM and ours provide a more detailed alpha matte
closer to the ground truth (GT). Our method captures the complex texture of the
lesion more effectively, maintaining details in ambiguous areas. The additional
visual examples on the Right in Table 2 highlight finer details in ambiguous and
tiny areas to demonstrate the new clinical values more comprehensively.

3.3 Ablation Studies

We conducted an extensive ablation study on the Brain-growth dataset to in-
vestigate the properties of our proposed method and its components.
Effect of the implicit function: To assess the impact of the implicit function
module, we designed a baseline model that replaced it with simple upsample
operations. The results in the Left on Table 2 revealed a significant performance
gap, indicating the importance of adaptive and dynamic scales in interpolation.
Effect of different scales: We evaluated the impact of using different levels of
features, ranging from 1, 2 to 3. The results in Table 2 Left, show that incorpo-
rating more information from multiple scales could improve model performance.
Effect of different kernel sizes: We also designed baselines using different
kernel sizes, such as 1 × 1, 2 × 2, and 3 × 3. The results on the Left in Table 2
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showed a performance drop for smaller and larger kernel sizes, highlighting the
importance of using a 2× 2 kernel size.
Visualization of learned offset: We visualize the learned offsets (in red points)
in the Middle in Table 2. We can see that the regions determined by the learned
offsets are more flexible and larger than the regular grids, such as 2× 2.

4 Conclusion

We discussed the challenges of medical image segmentation and the recent ex-
ploration of using alpha matte as a soft mask to represent uncertain regions
with high diagnostic value. We proposed a multi-scale regions-aware implicit
function network for the medical matting problem to generate high-quality and
resolution-free alpha matte. Experimental results on public medical matting
datasets demonstrate the effectiveness of our proposed approach. Our work con-
tributes to the development of accurate and efficient medical image segmenta-
tion, which assists clinicians in computer-assisted diagnosis and monitoring.
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